Appadurai et al. report a critical role for the sialyltransferase ST6GalNAc-I in immunosuppression and angiogenesis in non–small cell lung cancer (NSCLC) via sialyation of the glycoproteins NECTIN2 and MUC5AC. The cover image shows the distribution of MUC5AC in NSCLC tissue.
BACKGROUND. Kidney stone disease (KSD) affects ~10% of adults, is heritable, and associated with mineral metabolic abnormalities. METHODS. Genetic variants and pathways increasing KSD risk via calcium and phosphate homeostasis were ascertained using genome-wide association analyses, region-specific Mendelian randomization (MR), and genetic colocalization. Utility of pathway modulation was estimated via drug-target MR, and effects of variants on calcium-sensing receptor (CaSR)-signaling characterized. RESULTS. Seventy-nine independent KSD-associated genetic signals at 71 loci were identified. MR identified three loci affecting KSD risk via increased serum calcium or decreased serum phosphate concentrations (odds ratios for genomic regions=4.30, 11.42, and 13.83 per 1 standard deviation alteration; p<5.6x10-10). Colocalization analyses defined putative, non-coding KSD-causing variants estimated to account for 11-19% of KSD cases in proximity to diacylglycerol kinase delta (DGKD), a CaSR-signalling partner; solute carrier family 34 member 1 (SLC34A1), a renal sodium-phosphate transporter; and cytochrome P450 family 24 subfamily A member 1 (CYP24A1), which degrades 1,25-dihydroxyvitamin D. Drug- target MR indicated that reducing serum calcium by 0.08mmol/L via CASR, DGKD, or CYP24A1, or increasing serum phosphate by 0.16mmol/L via SLC34A1 may reduce KSD relative risk by up to 90%. Furthermore, reduced DGKδ expression and KSD-associated DGKD missense variants impaired CaSR-signal transduction in vitro, which was ameliorated by cinacalcet, a positive CaSR-allosteric modulator. CONCLUSION. DGKD-, SLC34A1-, and CYP24A1-associated variants linked to reduced CaSR-signal transduction, increased urinary phosphate excretion, and impaired 1,25-dihydroxyvitamin D inactivation, respectively, are common causes of KSD. Genotyping patients with KSD may facilitate personalised KSD-risk stratification and targeted pharmacomodulation of associated pathways to prevent KSD.
Catherine E. Lovegrove, Michelle Goldsworthy, Jeremy Haley, Diane Smelser, Caroline Gorvin, Fadil M. Hannan, Anubha Mahajan, Mohnish Suri, Omid Sadeghi-Alavijeh, Shabbir H. Moochhala, Daniel P. Gale, David Carey, Michael V. Holmes, Dominic Furniss, Rajesh V. Thakker, Sarah A. Howles
Alcohol-associated liver disease represents a significant global health challenge, with gut microbial dysbiosis and bacterial translocation playing a critical role in its pathogenesis. Patients with alcohol-associated hepatitis had increased fecal abundance of mammalian viruses including retroviruses. This study investigated the role of endogenous retroviruses (ERVs) in the development of alcohol-associated liver disease. Transcriptomic analysis of duodenal and liver biopsies revealed increased expression of several human ERVs, including HERV-K and HERV-H, in patients with alcohol-associated liver disease compared with controls. Chronic-binge ethanol feeding markedly induced ERV abundance in intestinal epithelial cells, but not the liver of mice. Ethanol increased ERV expression and activated the Z-DNA binding protein 1 (Zbp1)–mixed lineage kinase domain-like pseudokinase (Mlkl) signaling pathways to induce necroptosis in intestinal epithelial cells. Antiretroviral treatment reduced ethanol-induced intestinal ERV expression, stabilized the gut barrier, and decreased liver disease in microbiota-humanized mice. Furthermore, mice with an intestine-specific deletion of Zbp1 were protected against bacterial translocation and ethanol-induced steatohepatitis. These findings indicate that ethanol exploits this pathway by inducing ERVs and promoting innate immune responses, which results in the death of intestinal epithelial cells, gut barrier dysfunction and liver disease. Targeting the ERV-Zbp1 pathway may offer new therapies for patients with alcohol-associated liver disease.
Noemí Cabré, Marcos F. Fondevila, Wenchao Wei, Tomoo Yamazaki, Fernanda Raya Tonetti, Alvaro Eguileor, Ricard Garcia-Carbonell, Abraham S. Meijnikman, Yukiko Miyamoto, Susan Mayo, Yanhan Wang, Xinlian Zhang, Thorsten Trimbuch, Seija Lehnardt, Lars Eckmann, Derrick E. Fouts, Cristina Llorente, Hidekazu Tsukamoto, Peter Stärkel, Bernd Schnabl
Lymphocyte activation gene-3 (LAG3) is a coinhibitory receptor expressed by various immune cells. While immunomodulatory potential of LAG3 is being explored in cancer and autoimmunity, there is no information on its role following organ transplantation. Our study investigated the functions of LAG3 in a mouse model of renal allograft rejection. LAG3-/- recipients rapidly reject MHC-mismatched renal allografts that are spontaneously accepted by WT recipients, with graft histology characteristic of antibody mediated rejection (ABMR). Depletion of recipient B cells but not CD8+ T cells significantly extended kidney allograft survival in LAG3-/- recipients. Treatment of WT recipients with an antagonistic LAG3 antibody enhanced anti-donor immune responses and induced kidney damage associated with chronic rejection. The studies of conditional LAG3-/- recipients and mixed bone marrow chimeras demonstrated that LAG3 expression on either T or B cells is sufficient to regulate anti-donor humoral immunity but not to induce acute allograft rejection. The numbers and proinflammatory functions of graft-infiltrating NK cells were markedly increased in LAG3-/- recipients suggesting that LAG3 also regulates the effector stage of ABMR. These results are the first to identify LAG3 as a regulator of immune responses to kidney allografts and a potential therapeutic target for ABMR prevention and treatment.
Michael Nicosia, Ran Fan, Juyeun Lee, Gabriella L. All, Victoria Gorbacheva, José Ignacio Valenzuela, Yosuke Yamamoto, Ashley Beavers, Nina Dvorina, William M. Baldwin III, Eduardo Chuluyan, Motoo Araki, Brian T. Gaudette, Robert L. Fairchild, Booki Min, Anna Valujskikh
Accumulating evidence implicates the gut microbiome (GMB) in the pathogenesis and progression of Alzheimer’s disease (AD). We recently showed that the GMB regulates reactive astrocytosis and Aβ plaque accumulation in male APPPS1-21 AD model mice. Yet, the mechanism(s) by which GMB perturbation alters reactive astrocytosis in a manner that reduces Aβ deposition remain unknown. Here, we performed metabolomics on plasma from mice treated with antibiotics (abx) and identified a significant increase in plasma propionate, a gut-derived short chain fatty acid, only in male mice. Administration of sodium propionate reduced reactive astrocytosis and Aβ plaques in APPPS1-21 mice, phenocopying the abx-induced phenotype. Astrocyte-specific RNA sequencing on abx and propionate treated mice showed reduced expression of pro-inflammatory and increased expression of neurotrophic genes. Next, we performed flow cytometry experiments where we found abx and propionate decreased peripheral RAR-related orphan receptor-γ (Rorγt)+ CD4+ (Th17) cells and IL-17 secretion, which positively correlated with reactive astrocytosis. Lastly, using an IL-17 monoclonal antibody to deplete IL-17, we found that propionate reduces reactive astrocytosis and Aβ plaques in an IL-17-dependent manner. Together, these results suggest that gut-derived propionate regulates reactive astrocytosis and Aβ amyloidosis by decreasing peripheral Th17 cells and IL-17 release. Thus, propionate treatment or strategies boosting propionate production may represent novel therapeutic strategies for AD.
Sidhanth Chandra, Jelena Popovic, Naveen K. Singhal, Elyse A. Watkins, Hemraj B. Dodiya, Ian Q. Weigle, Miranda A. Salvo, Abhirami Ramakrishnan, Zhangying Chen, James T. Watson, Aashutosh Shetti, Natalie Piehl, Xiaoqiong Zhang, Leah K. Cuddy, Katherine R. Sadleir, Steven J. Schwulst, Murali Prakriya, David Gate, Sangram S. Sisodia, Robert Vassar
Autosomal Dominant Optic Atrophy (ADOA), the most prevalent hereditary optic neuropathy, leads to retinal ganglion cell (RGC) degeneration and vision loss. ADOA is primarily caused by mutations in the OPA1 gene, which encodes a conserved GTPase important for mitochondrial inner membrane dynamics. To date, the disease mechanism remains unclear, and no therapies are available. We generated a mouse model carrying the pathogenic Opa1R290Q/+ allele that recapitulated key features of human ADOA, including mitochondrial defects, age-related RGC loss, optic nerve degeneration, and reduced RGC functions. We identified SARM1, a neurodegeneration switch, as a key driver of RGC degeneration in these mice. Sarm1 knockout nearly completely suppressed all the degeneration phenotypes without reversing mitochondrial fragmentation. Additionally, we showed that a portion of SARM1 localized within the mitochondrial intermembrane space (IMS). These findings indicated that SARM1 was activated downstream of mitochondrial dysfunction in ADOA, highlighting it as a promising therapeutic target.
Chen Ding, Papa S. Ndiaye, Sydney R. Campbell, Michelle Y. Fry, Jincheng Gong, Sophia R. Wienbar, Whitney Gibbs, Philippe Morquette, Luke H. Chao, Michael Tri H. Do, Thomas Schwarz
The complement system executes an evolutionarily ancient innate immune response with important roles in many human diseases, including a variety of conditions involving the kidney, autoimmune disorders, age-related macular degeneration, and more. This series of reviews, curated by Dr. Claudia Kemper, highlights the latest discoveries in complement biology and examines ongoing efforts to target complement therapeutically. From the relatively newly uncovered functions of intracellular complement (complosome) to the complexities involved in using animal models of complementopathies, these reviews convey the challenges of studying complement and developing complement-targeted therapeutics as well as call attention to recent findings that supply momentum to the field.
×