Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Top read articles in the last 30 days

This list is updated daily and reflects the last month of access data. Articles older than two years will not be shown.

  • Research
  • Review
PIEZO1 mediates periostin+ myofibroblast activation and pulmonary fibrosis in mice
Liran Xu, … , Zuyi Yuan, Shengpeng Wang
Liran Xu, … , Zuyi Yuan, Shengpeng Wang
Published June 2, 2025
Citation Information: J Clin Invest. 2025;135(11):e184158. https://doi.org/10.1172/JCI184158.
View: Text | PDF
Research Article Cell biology Pulmonology

PIEZO1 mediates periostin+ myofibroblast activation and pulmonary fibrosis in mice

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease characterized by the excessive accumulation of activated myofibroblasts that deposit extracellular matrix (ECM) protein, leading to progressive scar formation and mechanical stress. However, the cellular origin and fate of myofibroblasts remain controversial, and the mechanisms by which myofibroblasts sense mechanical cues in the lung are unclear. Here, we report that periostin (Postn) is a reliable and distinctive marker for pulmonary myofibroblasts, while ablation of Postn+ myofibroblasts after injury ameliorated lung fibrosis. PIEZO1 was highly expressed in Postn+ myofibroblast and played a vital role in mechanoactivation of Postn+ myofibroblast and development of lung fibrosis. Conditional deletion of Piezo1 in Postn+ myofibroblasts significantly inhibited lung fibrosis by suppressing myofibroblast activation and proliferation. Loss of Piezo1 led to disruption of actin organization and prevention of Yap/Taz nuclear localization, thus shifting the myofibroblasts from a proliferative state into a stressed and apoptotic state. Furthermore, myofibroblast-specific Yap/Taz deletion fully recapitulated the protective phenotypes of myofibroblast-Piezo1–KO mice. These findings show that periostin marks pulmonary myofibroblasts, and that PIEZO1-mediated mechanosensation is essential for myofibroblast activation in the lung. Targeting PIEZO1 in the periostin-expressing cells is a novel therapeutic option to interfere with fibrotic diseases such as IPF .

Authors

Liran Xu, Ting Li, Yapeng Cao, Yu He, Zehua Shao, Siyu Liu, Bianbian Wang, Ailing Su, Huijing Tian, Yongxin Li, Guozheng Liang, Changhe Wang, John Shyy, Ying Xiong, Fangyuan Chen, Jason X.J. Yuan, Junjun Liu, Bin Zhou, Nina Wettschureck, Stefan Offermanns, Yang Yan, Zuyi Yuan, Shengpeng Wang

×

Total views: 3327


B cells shape naive CD8+ T cell programming
Cameron Manes, … , Ross M. Kedl, Jared Klarquist
Cameron Manes, … , Ross M. Kedl, Jared Klarquist
Published April 17, 2025
Citation Information: J Clin Invest. 2025;135(12):e190106. https://doi.org/10.1172/JCI190106.
View: Text | PDF
Research Article Autoimmunity Immunology

B cells shape naive CD8+ T cell programming

  • Text
  • PDF
Abstract

The presence of B cells is essential for the formation of CD8+ T cell memory after infection and vaccination. In this study, we investigated whether B cells influence the programming of naive CD8+ T cells prior to their involvement in an immune response. RNA sequencing indicated that B cells are necessary for sustaining the FOXO1-controlled transcriptional program, which is critical for homeostasis of these T cells. Without an appropriate B cell repertoire, mouse naive CD8+ T cells exhibit a terminal, effector-skewed phenotype, which significantly impacts their response to vaccination. A similar effector-skewed phenotype with reduced FOXO1 expression was observed in naive CD8+ T cells from human patients undergoing B cell–depleting therapies. Furthermore, we show that patients without B cells have a defect in generating long-lived CD8+ T cell memory following COVID vaccination. In summary, we demonstrate that B cells promote the quiescence of naive CD8+ T cells, poising them to become memory cells upon vaccination.

Authors

Cameron Manes, Miguel Guerrero Moreno, Jennifer Cimons, Marc A. D’Antonio, Tonya M. Brunetti, Michael G. Harbell, Sean Selva, Christopher Mizenko, Tyler L. Borko, Erika L. Lasda, Jay R. Hesselberth, Elena W.Y. Hsieh, Michael R. Verneris, Amanda L. Piquet, Laurent Gapin, Ross M. Kedl, Jared Klarquist

×

Total views: 3095


TDP-43 dysregulation of polyadenylation site selection is a defining feature of RNA misprocessing in amyotrophic lateral sclerosis and frontotemporal dementia
Frederick J. Arnold, … , Wei Li, Albert R. La Spada
Frederick J. Arnold, … , Wei Li, Albert R. La Spada
Published June 2, 2025
Citation Information: J Clin Invest. 2025;135(11):e182088. https://doi.org/10.1172/JCI182088.
View: Text | PDF
Research Article Genetics Neuroscience

TDP-43 dysregulation of polyadenylation site selection is a defining feature of RNA misprocessing in amyotrophic lateral sclerosis and frontotemporal dementia

  • Text
  • PDF
Abstract

Nuclear clearance and cytoplasmic aggregation of TAR DNA-binding protein 43 (TDP-43) are observed in many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although TDP-43 dysregulation of splicing has emerged as a key event in these diseases, TDP-43 can also regulate polyadenylation; yet this has not been adequately studied. Here, we applied the dynamic analysis of polyadenylation from an RNA-Seq (DaPars) tool to ALS/FTD transcriptome datasets and report extensive alternative polyadenylation (APA) upon TDP-43 alteration in ALS/FTD cell models and postmortem ALS/FTD neuronal nuclei. Importantly, many identified APA genes highlight pathways implicated in ALS/FTD pathogenesis. To determine the functional relevance of APA elicited by TDP-43 nuclear depletion, we examined microtubule affinity regulating kinase 3 (MARK3). Nuclear loss of TDP-43 yielded increased expression of MARK3 transcripts with longer 3′ UTRs, corresponding with a change in the subcellular distribution of MARK3 and increased neuronal tau S262 phosphorylation. Our findings define changes in polyadenylation site selection as a previously understudied feature of TDP-43–driven disease pathology in ALS/FTD and highlight a potentially important mechanistic link between TDP-43 dysfunction and tau regulation.

Authors

Frederick J. Arnold, Ya Cui, Sebastian Michels, Michael R. Colwin, Cameron M. Stockford, Wenbin Ye, Vidhya Maheswari Jawahar, Karen Jansen-West, Julien Philippe, Ravinder Gulia, Yunzi Gou, Oliver H. Tam, Sneha Menon, Wendy G. Situ, Saira L. Cazarez, Aryan Zandi, Kean C.K. Ehsani, Sierra Howard, Dennis W. Dickson, Molly Gale Hammell, Mercedes Prudencio, Leonard Petrucelli, Wei Li, Albert R. La Spada

×

Total views: 2983


PIEZO1 mediates mechanical reprogramming of neutrophils for proangiogenic specialization in the lung
Jin Wang, … , Bin Li, Jing Wang
Jin Wang, … , Bin Li, Jing Wang
Published June 2, 2025
Citation Information: J Clin Invest. 2025;135(11):e183796. https://doi.org/10.1172/JCI183796.
View: Text | PDF
Research Article Immunology Pulmonology Vascular biology

PIEZO1 mediates mechanical reprogramming of neutrophils for proangiogenic specialization in the lung

  • Text
  • PDF
Abstract

Neutrophils are the most abundant immune cells that constantly patrol or marginate inside vascular beds to support immune homeostasis. The extent to which neutrophils undergo reprogramming in response to the changes in vascular architecture and the resultant biological implications of such adaptations remain unclear. Here, we performed intravital imaging and transcriptional profiling to investigate neutrophil behavior across different tissues. Our findings revealed that neutrophils had significant deformability and spontaneous calcium signaling while navigating through the narrow pulmonary vessels. Pulmonary neutrophils exhibited unique transcriptional profiles and were specialized for proangiogenic functions. We found that the mechanosensitive ion channel Piezo-type mechanosensitive ion channel component 1 (PIEZO1) was essential for neutrophil reprogramming. Deletion of Piezo1 in neutrophils ablated the lung-specific proangiogenic transcriptional signature and impaired capillary angiogenesis in both physiological and pathological conditions. Collectively, these data show that mechanical adaptation of neutrophils within the pulmonary vasculature drives their reprogramming in the lungs and promotes pulmonary vascular homeostasis.

Authors

Jin Wang, Wenying Zhao, Wenjuan Bai, Dong Dong, Hui Wang, Xin Qi, Ajitha Thanabalasuriar, Youqiong Ye, Tian-le Xu, Hecheng Li, Paul Kubes, Bin Li, Jing Wang

×

Total views: 2722


Transcriptomic profiling after B cell depletion reveals central and peripheral immune cell changes in multiple sclerosis
Jessica Wei, … , Pierre-Paul Axisa, David A. Hafler
Jessica Wei, … , Pierre-Paul Axisa, David A. Hafler
Published March 11, 2025
Citation Information: J Clin Invest. 2025;135(11):e182790. https://doi.org/10.1172/JCI182790.
View: Text | PDF
Research Article Autoimmunity Immunology

Transcriptomic profiling after B cell depletion reveals central and peripheral immune cell changes in multiple sclerosis

  • Text
  • PDF
Abstract

Multiple sclerosis (MS) is a complex, genetically mediated autoimmune disease of the CNS, in which anti-CD20–mediated B cell depletion is remarkably effective in the treatment of early disease. Although previous studies investigated the effect of B cell depletion on select immune cell subsets using flow cytometry–based methods, the therapeutic effect on the patient’s immune landscape is unknown. In this study, we explored how B cell–depleting therapies modulate the immune landscape using single-cell RNA-Seq. We demonstrate that B cell depletion led to cell-type–specific changes in the abundance and function of cerebrospinal fluid (CSF) macrophages and peripheral blood monocytes. Specifically, a CSF-specific macrophage population with an antiinflammatory transcriptomic signature and peripheral CD16+ monocytes increased in frequency after B cell depletion. This was accompanied by increases in TNF-α mRNA and protein levels in monocytes following B cell depletion, consistent with the finding that anti–TNF-α treatment exacerbated autoimmune activity in MS. In parallel, B cell depletion induced changes in peripheral CD4+ T cell populations, including increases in the frequency of TIGIT+ Tregs and marked decreases in the frequency of myelin peptide–loaded, tetramer-binding CD4+ T cells. Collectively, this study provides an exhaustive transcriptomic map of immunological changes, revealing different cell-type–specific reprogramming as a result of B cell depletion treatment of MS.

Authors

Jessica Wei, Jeonghyeon Moon, Yoshiaki Yasumizu, Le Zhang, Khadir Radassi, Nicholas Buitrago-Pocasangre, M. Elizabeth Deerhake, Nicolas Strauli, Chun-Wei Chen, Ann Herman, Rosetta Pedotti, Catarina Raposo, Isaiah Yim, Jenna Pappalardo, Erin E. Longbrake, Tomokazu S. Sumida, Pierre-Paul Axisa, David A. Hafler

×

Total views: 2601


PROX1 is an early driver of lineage plasticity in prostate cancer
Zhi Duan, … , Yuzhuo Wang, Joshi J. Alumkal
Zhi Duan, … , Yuzhuo Wang, Joshi J. Alumkal
Published June 2, 2025
Citation Information: J Clin Invest. 2025;135(11):e187490. https://doi.org/10.1172/JCI187490.
View: Text | PDF
Research Article Cell biology Oncology

PROX1 is an early driver of lineage plasticity in prostate cancer

  • Text
  • PDF
Abstract

Lineage plasticity is recognized as a critical determinant of lethality and resistance to AR pathway inhibitors in prostate cancer. Lineage plasticity is a continuum, ranging from AR activity-low tumors, AR-null tumors that do not express a neuroendocrine prostate cancer (NEPC) program (i.e., double-negative prostate cancer [DNPC]), and AR-null NEPC tumors. Factors upregulated early in lineage plasticity are not well-characterized. The clarification of such factors is essential to identify tumors undergoing lineage plasticity or at risk of this occurring. Our integrative analysis of metastatic prostate cancer patient tumors, patient-derived xenografts, and cell models determined that PROX1 is upregulated early in the lineage plasticity continuum and progressively increases as tumors lose AR activity. We determined DNA methylation is a key regulator of PROX1 expression. PROX1 suppression in DNPC and NEPC reduces cell survival and impacts apoptosis and differentiation, demonstrating PROX1’s functional importance. PROX1 is not directly targetable with standard drug development approaches. However, affinity immunopurification demonstrated histone deacetylases (HDACs) are among the top PROX1-interacting proteins; HDAC inhibition depletes PROX1 and recapitulates PROX1 suppression in DNPC and NEPC. Altogether, our results suggest PROX1 promotes the emergence of lineage plasticity, and HDAC inhibition is a promising approach to treat tumors across the lineage plasticity continuum.

Authors

Zhi Duan, Mingchen Shi, Anbarasu Kumaraswamy, Dong Lin, Dhruv Khokhani, Yong Wang, Chao Zhang, Diana Flores, Eva Rodansky, Olivia A. Swaim, William K. Storck, Hannah N. Beck, Radhika A. Patel, Erolcan Sayar, Brian P. Hanratty, Hui Xue, Xin Dong, Zoe R. Maylin, Rensheng Wan, David A. Quigley, Martin Sjöström, Ya-Mei Hu, Faming Zhao, Zheng Xia, Siyuan Cheng, Xiuping Yu, Felix Y. Feng, Li Zhang, Rahul Aggarwal, Eric J. Small, Visweswaran Ravikumar, Arvind Rao, Karan Bedi, John K. Lee, Colm Morrissey, Ilsa Coleman, Peter S. Nelson, Eva Corey, Aaron M. Udager, Ryan J. Rebernick, Marcin P. Cieslik, Arul M. Chinnaiyan, Joel A. Yates, Michael C. Haffner, Yuzhuo Wang, Joshi J. Alumkal

×

Total views: 2373


AgRP neuron hyperactivity drives hyperglycemia in a mouse model of type 2 diabetes
Yang Gou, … , Gregory J. Morton, Michael W. Schwartz
Yang Gou, … , Gregory J. Morton, Michael W. Schwartz
Published May 15, 2025
Citation Information: J Clin Invest. 2025;135(10):e189842. https://doi.org/10.1172/JCI189842.
View: Text | PDF
Research Article Endocrinology Metabolism

AgRP neuron hyperactivity drives hyperglycemia in a mouse model of type 2 diabetes

  • Text
  • PDF
Abstract

Growing evidence suggests that the pathogenesis of type 2 diabetes (T2D) involves dysfunctional central mechanisms, and, hence, the brain can be targeted to treat this disease. As an example, a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1) can normalize hyperglycemia for weeks or months in rodent models of T2D. Convergent evidence implicates inhibition of a particular subset of neurons as a mediator of this FGF1 effect. Specifically, AgRP neurons, which are located in the hypothalamic arcuate nucleus (ARC) and are hyperactive in Lepob/ob mice and other rodent models of T2D. To investigate whether chronic AgRP neuron inactivation mimics the antidiabetic action of FGF1, we directed an adeno-associated virus (AAV) containing a cre-inducible tetanus toxin–GFP (TeTx-GFP) cassette (or cre-inducible AAV GFP control) to the ARC of obese, diabetic male Lepob/ob mice in which cre recombinase is expressed solely by AgRP neurons (Lepob/ob AgRP-Cre mice). We report that over a 10-wk period of observation, hyperglycemia was fully normalized by AgRP neuron inactivation. In contrast, changes in energy homeostasis parameters (food intake, energy expenditure, body weight, and fat mass) were not observed. We conclude that in diabetic male Lepob/ob mice, AgRP neuron hyperactivity is required for hyperglycemia but is dispensable for obesity.

Authors

Yang Gou, Micaela Glat, Vincent Damian, Caeley L. Bryan, Bao Anh Phan, Chelsea L. Faber, Arikta Trivedi, Matthew K. Hwang, Jarrad M. Scarlett, Gregory J. Morton, Michael W. Schwartz

×

Total views: 2215


Preadipocyte IL-13/IL-13Rα1 signaling regulates beige adipogenesis through modulation of PPARγ activity
Alexandra R. Yesian, … , Alexander S. Banks, Chih-Hao Lee
Alexandra R. Yesian, … , Alexander S. Banks, Chih-Hao Lee
Published April 8, 2025
Citation Information: J Clin Invest. 2025;135(11):e169152. https://doi.org/10.1172/JCI169152.
View: Text | PDF
Research Article Cell biology Metabolism

Preadipocyte IL-13/IL-13Rα1 signaling regulates beige adipogenesis through modulation of PPARγ activity

  • Text
  • PDF
Abstract

Type 2 innate lymphoid cells (ILC2s) regulate the proliferation of preadipocytes that give rise to beige adipocytes. Whether and how ILC2 downstream Th2 cytokines control beige adipogenesis remain unclear. We used cell systems and genetic models to examine the mechanism through which IL-13, an ILC2-derived Th2 cytokine, controls beige adipocyte differentiation. IL-13 priming in preadipocytes drove beige adipogenesis by upregulating beige-promoting metabolic programs, including mitochondrial oxidative metabolism and PPARγ-related pathways. The latter was mediated by increased expression and activity of PPARγ through the IL-13 receptor 1 (IL-13R1) downstream effectors STAT6 and p38 MAPK, respectively. Il13-KO or preadipocyte Il13ra1-KO mice were refractory to cold- or β3-adrenergic agonist–induced beiging in inguinal white adipose tissue, whereas Il4-KO mice showed no defects in beige adipogenesis. Il13-KO and Il13ra1-KO mouse models exhibited increased body weight and fat mass and dysregulated glucose metabolism but had a mild cold-intolerant phenotype, likely due to their intact brown adipocyte recruitment. We also found that genetic variants of human IL13RA1 were associated with BMI and type 2 diabetes. These results suggest that IL-13 signaling–regulated beige adipocyte function may play a predominant role in modulating metabolic homeostasis rather than in thermoregulation.

Authors

Alexandra R. Yesian, Mayer M. Chalom, Nelson H. Knudsen, Alec L. Hyde, Jean Personnaz, Hyunjii Cho, Yae-Huei Liou, Kyle A. Starost, Chia-Wei Lee, Dong-Yan Tsai, Hsing-Wei Ho, Jr-Shiuan Lin, Jun Li, Frank B. Hu, Alexander S. Banks, Chih-Hao Lee

×

Total views: 2100


Identification of CD84 as a potent survival factor in acute myeloid leukemia
Yinghui Zhu, … , John C. Williams, Flavia Pichiorri
Yinghui Zhu, … , John C. Williams, Flavia Pichiorri
Published April 8, 2025
Citation Information: J Clin Invest. 2025;135(11):e176818. https://doi.org/10.1172/JCI176818.
View: Text | PDF
Research Article Cell biology Hematology Oncology

Identification of CD84 as a potent survival factor in acute myeloid leukemia

  • Text
  • PDF
Abstract

Acute myeloid leukemia (AML) is an aggressive and often deadly malignancy associated with proliferative immature myeloid blasts. Here, we identified CD84 as a critical survival regulator in AML. High levels of CD84 expression provided a survival advantage to leukemia cells, whereas CD84 downregulation disrupted their proliferation, clonogenicity, and engraftment capabilities in both human cell lines and patient-derived xenograft cells. Critically, loss of CD84 also markedly blocked leukemia engraftment and clonogenicity in MLL-AF9 and inv(16) AML mouse models, highlighting its pivotal role as a survival factor across species. Mechanistically, CD84 regulated leukemia cells’ energy metabolism and mitochondrial dynamics. Depletion of CD84 altered mitochondrial ultrastructure and function of leukemia cells, and it caused downmodulation of both oxidative phosphorylation and fatty acid oxidation pathways. CD84 knockdown induced a block of Akt phosphorylation and downmodulation of nuclear factor erythroid 2-related factor 2 (NRF2), impairing AML antioxidant defense. Conversely, CD84 overexpression stabilized NRF2 and promoted its transcriptional activation, thereby supporting redox homeostasis and mitochondrial function in AML. Collectively, our findings indicate that AML cells depend on CD84 to support antioxidant prosurvival pathways, highlighting a therapeutic vulnerability of leukemia cells.

Authors

Yinghui Zhu, Mariam Murtadha, Miaomiao Liu, Enrico Caserta, Ottavio Napolitano, Le Xuan Truong Nguyen, Huafeng Wang, Milad Moloudizargari, Lokesh Nigam, Theophilus Tandoh, Xuemei Wang, Alex Pozhitkov, Rui Su, Xiangjie Lin, Marc Denisse Estepa, Raju Pillai, Joo Song, James F. Sanchez, Yu-Hsuan Fu, Lianjun Zhang, Man Li, Bin Zhang, Ling Li, Ya-Huei Kuo, Steven Rosen, Guido Marcucci, John C. Williams, Flavia Pichiorri

×

Total views: 1928


Polybromo 1/vimentin axis dictates tumor grade, epithelial-mesenchymal transition, and metastasis in pancreatic cancer
Munenori Kawai, … , Etsuro Hatano, Hiroshi Seno
Munenori Kawai, … , Etsuro Hatano, Hiroshi Seno
Published June 2, 2025
Citation Information: J Clin Invest. 2025;135(11):e177533. https://doi.org/10.1172/JCI177533.
View: Text | PDF
Research Article Gastroenterology Oncology

Polybromo 1/vimentin axis dictates tumor grade, epithelial-mesenchymal transition, and metastasis in pancreatic cancer

  • Text
  • PDF
Abstract

Mutations in Polybromo 1 (PBRM1), a subunit of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, are frequently observed in several cancers, including pancreatic ductal adenocarcinoma (PDAC). In this study, we demonstrated that pancreas-specific loss of Pbrm1 in mice harboring Kras mutations and Trp53 deletions accelerated the development of poorly differentiated PDAC, epithelial-mesenchymal transition (EMT), and metastasis, resulting in worsened prognosis. Pbrm1 loss in preexisting PDAC shifted the tumor grade from a well- to a poorly differentiated state and elevated vimentin expression. Pbrm1-null PDAC exhibited downregulation of apical junction genes and upregulation of EMT pathway genes, including the vimentin and squamous molecular subtype signature genes. Mechanistically, PBRM1 bound to the vimentin gene promoter and directly downregulated its expression. Furthermore, suppression of vimentin in Pbrm1-null PDAC cells reversed the dedifferentiation phenotype and reduced EMT and metastasis. Consistently, reduced PBRM1 expression correlated with high vimentin expression, poorly differentiated histology, a high recurrence rate, and reduced overall survival in human PDACs. Additionally, PDAC with PBRM1 deletion was associated with the aggressive squamous molecular subtype. Our data established PBRM1 as a tumor suppressor that controls tumor grade and metastasis of PDAC by regulating vimentin expression.

Authors

Munenori Kawai, Akihisa Fukuda, Munehiro Ikeda, Kei Iimori, Kenta Mizukoshi, Kosuke Iwane, Go Yamakawa, Mayuki Omatsu, Mio Namikawa, Makoto Sono, Tomonori Masuda, Yuichi Fukunaga, Munemasa Nagao, Osamu Araki, Takaaki Yoshikawa, Satoshi Ogawa, Yukiko Hiramatsu, Motoyuki Tsuda, Takahisa Maruno, Yuki Nakanishi, Dieter Saur, Tatsuaki Tsuruyama, Toshihiko Masui, Etsuro Hatano, Hiroshi Seno

×

Total views: 1896

Show more results

Mechanism-based nonopioid analgesic targets
Xiangsunze Zeng, … , Rasheen Powell, Clifford J. Woolf
Xiangsunze Zeng, … , Rasheen Powell, Clifford J. Woolf
Published June 2, 2025
Citation Information: J Clin Invest. 2025;135(11):e191346. https://doi.org/10.1172/JCI191346.
View: Text | PDF
Review

Mechanism-based nonopioid analgesic targets

  • Text
  • PDF
Abstract

Acute pain management has historically been dominated by opioids, whose efficacy is overshadowed by the risks of addiction, tolerance, and dependence, culminating in the global opioid crisis. To transcend this issue, we must innovate beyond opioid-based μ receptor treatments, identifying nonopioid analgesics with high efficacy and minimal adverse effects. This Review navigates the multifaceted landscape of inflammatory, neuropathic, and nociplastic pain, emphasizing mechanism-based analgesic targets tailored to specific pain conditions. We delve into the challenges and breakthroughs in clinical trials targeting ion channels, GPCRs, and other molecular targets. We also highlight the intricate crosstalk between different physiological systems and the need for multimodal interventions with distinct pharmacodynamics to manage acute and chronic pain, respectively. Furthermore, we explore emerging strategies, including gene therapy, stem cell therapy, cell type–specific neuromodulation, and AI-driven techniques for objective, unbiased pain assessment and research. These innovative approaches are poised to revolutionize pain management, paving the way for the discovery of safer and more effective analgesics.

Authors

Xiangsunze Zeng, Rasheen Powell, Clifford J. Woolf

×

Total views: 2805


Sex differences in the transition to chronic pain
Angela F. Smith, … , Giovanni Berardi, Kathleen A. Sluka
Angela F. Smith, … , Giovanni Berardi, Kathleen A. Sluka
Published June 2, 2025
Citation Information: J Clin Invest. 2025;135(11):e191931. https://doi.org/10.1172/JCI191931.
View: Text | PDF
Review

Sex differences in the transition to chronic pain

  • Text
  • PDF
Abstract

Chronic pain affects more than 50 million Americans, with women disproportionately affected by severe pain, pain interference, and overall disability. The development of chronic pain is multifactorial and often begins with an incident of acute pain associated with an injury or a surgical procedure that transitions to persistent pain lasting for months or years. Despite this, there are limited clinical studies investigating sex differences in predictors and biomarkers for the transition to chronic pain. Several preclinical animal models have been developed to gain a better understanding of the mechanisms for the transition to chronic pain, and several sex-specific mechanisms have been identified across multiple systems. These preclinical models generally involve a multiple-insult approach, in which a priming insult enhances sensitivity to a subsequent induction stimulus. There is emerging evidence from preclinical research for several male-specific and female-specific mechanisms, as well as several studies showing shared mechanisms. Here, we review the clinical and preclinical literature covering sex differences in the periphery and immune system, the central nervous system, and the endocrine system related to the transition to chronic pain. We further highlight gaps in the literature and provide recommendations for future research to understand sex-specific differences in the transition to chronic pain.

Authors

Angela F. Smith, Ashley N. Plumb, Giovanni Berardi, Kathleen A. Sluka

×

Total views: 2117


Role of local complement activation in kidney fibrosis and repair
Didier Portilla, … , Vikram Sabapathy, Daniel Chauss
Didier Portilla, … , Vikram Sabapathy, Daniel Chauss
Published June 16, 2025
Citation Information: J Clin Invest. 2025;135(12):e188345. https://doi.org/10.1172/JCI188345.
View: Text | PDF
Review Series

Role of local complement activation in kidney fibrosis and repair

  • Text
  • PDF
Abstract

The complement system is an important component of the innate immune system involved in host defense and maintaining homeostasis. While the liver is the main source of complement proteins in the bloodstream, recent research has shown that various tissues, including the kidneys, can produce complement components locally in response to both acute and chronic inflammation. This Review highlights evidence from animal models of glomerular and tubulointerstitial kidney disease showing increased expression of intracellular complement in the kidneys. Studies using knockout mice for complement and complement receptors, along with complement inhibitors, have demonstrated that reduced complement activation in animal models of kidney fibrosis led to reduced inflammation and fibrosis, thereby supporting the pathogenic role of complement activation. Data from single-cell RNA-sequencing, spatial transcriptomics, and proteomics studies further demonstrate that alterations in local complement levels contribute to the fibrotic microenvironment observed in these models. Additionally, kidney biopsy results from patients with acute kidney injury and chronic kidney disease (CKD) indicate an increased expression of intracellular complement components as disease progresses. Developing drugs aimed at diminishing the expression and activation of local complement in glomerular and tubulointerstitial kidney disease could provide a novel approach to managing CKD.

Authors

Didier Portilla, Vikram Sabapathy, Daniel Chauss

×

Total views: 1880


Diet’s impact on gut microbial assemblage in health and disease
Carolina Koletic, … , Anthony Martin, Suzanne Devkota
Carolina Koletic, … , Anthony Martin, Suzanne Devkota
Published June 2, 2025
Citation Information: J Clin Invest. 2025;135(11):e184319. https://doi.org/10.1172/JCI184319.
View: Text | PDF
Review Series

Diet’s impact on gut microbial assemblage in health and disease

  • Text
  • PDF
Abstract

The gut microbiome has been linked to everything from human behavior to athletic performance to disease pathogenesis. And yet, few universal truths have emerged regarding how the microbiome exerts its effects or responds to the host environment except for one: gut microbiota are exquisitely sensitive to human diets. What we eat from birth onward shapes our gut microbiome composition and function, and this is likely an evolutionarily conserved interaction that benefits the microbe and often the host. However, modern diets and lifestyles have created discordance between our slowly evolving human genome and rapidly adaptable microbiome, and have been implicated in the rise of chronic diseases over the past 75 years. Diet and microbiome interactions have been reviewed extensively, so here we focus on areas of microbiome research that have most illuminated natural and disruptive dietary forces over time in humans, and where we may have opportunities to restore the natural balance of host with microbes in our modern world.

Authors

Carolina Koletic, Amanda Mrad, Anthony Martin, Suzanne Devkota

×

Total views: 1820


Friend or foe: assessing the value of animal models for facilitating clinical breakthroughs in complement research
Felix Poppelaars, … , V. Michael Holers, Joshua M. Thurman
Felix Poppelaars, … , V. Michael Holers, Joshua M. Thurman
Published June 16, 2025
Citation Information: J Clin Invest. 2025;135(12):e188347. https://doi.org/10.1172/JCI188347.
View: Text | PDF
Review Series

Friend or foe: assessing the value of animal models for facilitating clinical breakthroughs in complement research

  • Text
  • PDF
Abstract

Animal experiments have long been a cornerstone of advancements in biomedical research, particularly in developing novel therapeutic strategies for inflammatory and autoimmune diseases. However, these historically important approaches are now facing growing scrutiny for ethical reasons, concerns about translational limitations to human biology, and the rising availability of animal-free research methods. This shift raises a critical question: How relevant and effective are animal models for driving future advancements in today’s research landscape? This Review aims to explore this question within the field of biomedical research on the complement system, critically evaluating the contribution of animal models to the recent advancements and clinical successes of complement-targeted therapies. Specifically, we assess areas where animal studies have been indispensable for elucidating disease mechanisms and conducting preclinical evaluations, alongside instances where findings from animal models failed to translate successfully to human trials. Furthermore, we discuss similarities and differences in the complement system between animals and humans and explore innovations in animal research designed to improve translatability to human biology. By assessing the contributions of animal studies to complement therapeutics, this Review aims to provide insights into animal models’ strengths, limitations, and evolving role in complement research.

Authors

Felix Poppelaars, V. Michael Holers, Joshua M. Thurman

×

Total views: 1789


Present and future of microbiome-targeting therapeutics
Lauren E. Lynch, … , Anthony W. Maresso, Geoffrey A. Preidis
Lauren E. Lynch, … , Anthony W. Maresso, Geoffrey A. Preidis
Published June 2, 2025
Citation Information: J Clin Invest. 2025;135(11):e184323. https://doi.org/10.1172/JCI184323.
View: Text | PDF
Review Series

Present and future of microbiome-targeting therapeutics

  • Text
  • PDF
Abstract

A large body of evidence suggests that single- and multiple-strain probiotics and synbiotics could have roles in the management of specific gastrointestinal disorders. However, ongoing concerns regarding the quality and heterogeneity of the clinical data, safety in vulnerable populations, and the lack of regulation of products containing live microbes are barriers to widespread clinical use. Safety and regulatory issues must be addressed and new technologies considered. One alternative future strategy is the use of synthetic bacterial communities, defined as manually assembled consortia of two or more bacteria originally derived from the human gastrointestinal tract. Synthetic bacterial communities can model functional, ecological, and structural aspects of native communities within the gastrointestinal tract, occupying varying nutritional niches and providing the host with a stable, robust, and diverse gut microbiota that can prevent pathobiont colonization by way of colonization resistance. Alternatively, phage therapy is the use of lytic phage to treat bacterial infections. The rise of antimicrobial resistance has led to renewed interest in phage therapy, and the high specificity of phages for their hosts has spurred interest in using phage-based approaches to precisely modulate the microbiome. In this Review, we consider the present and future of microbiome-targeting therapies, with a special focus on early-life applications, such as prevention of necrotizing enterocolitis.

Authors

Lauren E. Lynch, Rachel Lahowetz, Christian Maresso, Austen Terwilliger, Jason Pizzini, Valeria Melendez Hebib, Robert A. Britton, Anthony W. Maresso, Geoffrey A. Preidis

×

Total views: 1644


The secret life of complement: challenges and opportunities in exploring functions of the complosome in disease
Tilo Freiwald, Behdad Afzali
Tilo Freiwald, Behdad Afzali
Published June 16, 2025
Citation Information: J Clin Invest. 2025;135(12):e188350. https://doi.org/10.1172/JCI188350.
View: Text | PDF
Review Series

The secret life of complement: challenges and opportunities in exploring functions of the complosome in disease

  • Text
  • PDF
Abstract

The complement system is a highly conserved and essential immune component with pivotal roles in innate and adaptive immunity. It is increasingly recognized that the complement system has a profound impact on disease. Current complement-targeting therapeutics for clinical use almost exclusively target the complement system in circulation. However, recent discoveries have demonstrated that complement is not only liver derived and plasma operative, but also synthesized and activated inside many cells locally within tissues, performing noncanonical, cell-autonomous intracellular functions, collectively referred to as the complosome. These intracellular complement pathways are distinct from the classical plasma-based system and critical for regulating fundamental cellular processes, including metabolism, gene transcription, autophagy, and the activation and resolution of inflammation. This Review explores the emerging roles of the complosome and current knowledge regarding its relation to human diseases, highlighting evidence across organ systems and disease states, including the kidneys, digestive tract, lungs, heart, CNS, musculoskeletal system, skin, and cancer. We also review current scientific approaches for detecting and functionally investigating the complosome, addressing challenges such as technological limitations and the need for advanced experimental models to delineate its tissue-specific roles. Finally, we discuss central unanswered questions critical for developing innovative therapeutic strategies targeting intracellular complement pathways. These strategies hold potential to modulate disease-specific mechanisms while preserving systemic complement activity.

Authors

Tilo Freiwald, Behdad Afzali

×

Total views: 1599


Social, microbial, and immune factors linking bacterial vaginosis and infectious diseases
Nicole M. Gilbert, … , Pascal Gagneux, Amanda L. Lewis
Nicole M. Gilbert, … , Pascal Gagneux, Amanda L. Lewis
Published June 2, 2025
Citation Information: J Clin Invest. 2025;135(11):e184322. https://doi.org/10.1172/JCI184322.
View: Text | PDF
Review Series

Social, microbial, and immune factors linking bacterial vaginosis and infectious diseases

  • Text
  • PDF
Abstract

Bacterial vaginosis (BV) is a polymicrobial condition of the vaginal microbiota associated with a variety of sexually transmitted infections, infections of maternal and fetal tissues during pregnancy, and even some infections outside of the reproductive tract, including the urinary tract and mouth. BV has also been associated with conditions in which the body generates prominent inflammatory reactions to microbes, including infections of the cervix and other upper genital tract tissues. For reasons still not understood, BV is a highly recurrent and often difficult-to-treat condition, complicating attempts to prevent these associated infections. An additional layer of complexity arises from the increasing awareness that the presence of BV-associated bacteria in the vagina is not always symptomatic or associated with adverse outcomes. In this concise Review, we summarize and synthesize three groups of factors grounded in the literature that may be fueling the associations between BV and infection: (a) aspects of society and culture; (b) pathogens, virulence factors, and processes of microbial antagonism and synergy; and (c) host factors, such as genetics and immunity. Our goal is to understand what contexts and combinations of microbial, host, and social factors conspire to make BV virulent in some individuals but not others. Disrupting these patterns more systematically may achieve healthier outcomes.

Authors

Nicole M. Gilbert, Luis A. Ramirez Hernandez, Daniela Berman, Sydney Morrill, Pascal Gagneux, Amanda L. Lewis

×

Total views: 1361


Stress and substance use disorders: risk, relapse, and treatment outcomes
Rajita Sinha
Rajita Sinha
Published August 15, 2024
Citation Information: J Clin Invest. 2024;134(16):e172883. https://doi.org/10.1172/JCI172883.
View: Text | PDF
Review Series

Stress and substance use disorders: risk, relapse, and treatment outcomes

  • Text
  • PDF
Abstract

Stress has long been associated with substance misuse and substance use disorders (SUDs). The past two decades have seen a surge in research aimed at understanding the underlying mechanisms driving this association. This Review introduces a multilevel “adaptive stress response” framework, encompassing a stress baseline, acute reaction, and recovery with return-to-homeostasis phase that occurs at varying response times and across domains of analysis. It also discusses evidence showing the disruption of this adaptive stress response in the context of chronic and repeated stressors, trauma, adverse social and drug-related environments, as well as with acute and chronic drug misuse and with drug withdrawal and abstinence sequelae. Subjective, cognitive, peripheral, and neurobiological disruptions in the adaptive stress response phases and their link to inflexible, maladaptive coping; increased craving; relapse risk; and maintenance of drug intake are also presented. Finally, the prevention and treatment implications of targeting this “stress pathophysiology of addiction” are discussed, along with specific aspects that may be targeted in intervention development to rescue stress-related alterations in drug motivation and to improve SUD treatment outcomes.

Authors

Rajita Sinha

×

Total views: 1076


Therapeutic vaccines for herpesviruses
Jeffrey I. Cohen
Jeffrey I. Cohen
Published May 1, 2024
Citation Information: J Clin Invest. 2024;134(9):e179483. https://doi.org/10.1172/JCI179483.
View: Text | PDF
Review

Therapeutic vaccines for herpesviruses

  • Text
  • PDF
Abstract

Herpesviruses establish latent infections, and most reactivate frequently, resulting in symptoms and virus shedding in healthy individuals. In immunocompromised patients, reactivating virus can cause severe disease. Persistent EBV has been associated with several malignancies in both immunocompromised and nonimmunocompromised persons. Reactivation and shedding occur with most herpesviruses, despite potent virus-specific antibodies and T cell immunity as measured in the blood. The licensure of therapeutic vaccines to reduce zoster indicates that effective therapeutic vaccines for other herpesviruses should be feasible. However, varicella-zoster virus is different from other human herpesviruses in that it is generally only shed during varicella and zoster. Unlike prophylactic vaccines, in which the correlate of immunity is antibody function, T cell immunity is the correlate of immunity for the only effective therapeutic herpesvirus vaccine–zoster vaccine. While most studies of therapeutic vaccines have measured immunity in the blood, cellular immunity at the site of reactivation is likely critical for an effective therapeutic vaccine for certain viruses. This Review summarizes the status of therapeutic vaccines for herpes simplex virus, cytomegalovirus, and Epstein-Barr virus and proposes approaches for future development.

Authors

Jeffrey I. Cohen

×

Total views: 1067

Show more results

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts