This list is updated daily and reflects the last month of access data. Articles older than two years will not be shown.
BACKGROUND Previous epidemiologic studies of autoimmune diseases in the US have included a limited number of diseases or used metaanalyses that rely on different data collection methods and analyses for each disease.METHODS To estimate the prevalence of autoimmune diseases in the US, we used electronic health record data from 6 large medical systems in the US. We developed a software program using common methodology to compute the estimated prevalence of autoimmune diseases alone and in aggregate that can be readily used by other investigators to replicate or modify the analysis over time.RESULTS Our findings indicate that over 15 million people, or 4.6% of the US population, have been diagnosed with at least 1 autoimmune disease from January 1, 2011, to June 1, 2022, and 34% of those are diagnosed with more than 1 autoimmune disease. As expected, females (63% of those with autoimmune disease) were almost twice as likely as males to be diagnosed with an autoimmune disease. We identified the top 20 autoimmune diseases based on prevalence and according to sex and age.CONCLUSION Here, we provide, for what we believe to be the first time, a large-scale prevalence estimate of autoimmune disease in the US by sex and age.FUNDING Autoimmune Registry Inc., the National Heart Lung and Blood Institute, the National Center for Advancing Translational Sciences, the Intramural Research Program of the National Institute of Environmental Health Sciences.
Aaron H. Abend, Ingrid He, Neil Bahroos, Stratos Christianakis, Ashley B. Crew, Leanna M. Wise, Gloria P. Lipori, Xing He, Shawn N. Murphy, Christopher D. Herrick, Jagannadha Avasarala, Mark G. Weiner, Jacob S. Zelko, Erica Matute-Arcos, Mark Abajian, Philip R.O. Payne, Albert M. Lai, Heath A. Davis, Asher A. Hoberg, Chris E. Ortman, Amit D. Gode, Bradley W. Taylor, Kristen I. Osinski, Damian N. Di Florio, Noel R. Rose, Frederick W. Miller, George C. Tsokos, DeLisa Fairweather
Total views: 3469
Pulmonary fibrosis (PF) has been called a fibroproliferative disease, yet the functional importance of proliferating fibroblasts to PF has not been systematically examined. In response to alveolar injury, quiescent alveolar fibroblasts differentiate into fibrotic fibroblasts that express high amounts of collagens. However, what role, if any, proliferation plays in the accumulation of fibrotic fibroblasts has remained unclear. Using 5-ethynyl-2′-deoxyuridine (EdU) incorporation, genetic lineage tracing, and single-cell RNA-Seq, we delineated the proliferation dynamics of lung fibroblasts during post-injury fibrogenesis. We found substantial DNA replication in progeny of alveolar fibroblasts in 2 independent models of PF. Lineage labeling revealed clonal expansion of these fibroblast descendants principally in regions of fibrotic remodeling. The transcriptome of proliferating fibroblasts closely resembled that of fibrotic fibroblasts, suggesting that fibroblasts can first differentiate into fibrotic fibroblasts and then proliferate. Genetic ablation of proliferating fibroblasts and selective inhibition of cytokinesis in alveolar fibroblast descendants significantly mitigated PF and rescued lung function. Furthermore, fibroblasts in precision-cut lung slices from human fibrotic lungs exhibited higher proliferation rates than did those in nondiseased lungs. Together, this work establishes fibroblast proliferation as a critical driver of PF and suggests that specifically targeting fibroblast proliferation could be a new therapeutic strategy for fibrotic diseases.
Christopher Molina, Tatsuya Tsukui, Imran S. Khan, Xin Ren, Wenli Qiu, Michael Matthay, Paul Wolters, Dean Sheppard
Total views: 2250
Macrophage-mediated phagocytosis plays a critical role in the elimination of cancer cells and shaping antitumor immunity. However, the tumor-intrinsic pathways that regulate cancer cell sensitivity to macrophage-mediated phagocytosis remain poorly defined. In this study, we performed a genome-wide CRISPR screen in murine pancreatic cancer cells cocultured with primary macrophages and identified that disruption of the tumor-intrinsic pyrimidine synthesis pathway enhances phagocytosis. Mechanistically, we discovered that macrophages inhibit the pyrimidine salvage pathway in tumor cells by upregulating Upp1-mediated uridine degradation through cytokines TNF-α and IL-1. This shift increased tumor cells’ reliance on de novo pyrimidine synthesis. As a result, tumor cells with impaired de novo pyrimidine synthesis showed depleted UMP and displayed enhanced exposure of phosphatidylserine (PtdSer), a major “eat-me” signal, thereby promoting macrophage-mediated phagocytosis. In multiple pancreatic cancer models, Cad-deficient tumors exhibited markedly reduced tumor burden with increased levels of phagocytosis by macrophages. Importantly, the Cad-mediated suppression of pancreatic cancer was dependent on TAMs and cytokines IL-1 and TNF-α. Pharmacological inhibition of DHODH, which blocks de novo pyrimidine synthesis, similarly decreased tumor burden with enhanced phagocytosis in pancreatic cancer models. These findings highlight the critical role of the tumor-intrinsic pyrimidine synthesis pathway in modulating macrophage-mediated antitumor immunity, with potential therapeutic implications.
Jie Zhao, Xinghao Li, Xinyu Li, Pengfei Ren, Yilan Wu, Hao Gong, Lijian Wu, Junran Huang, Saisai Wang, Ziwei Guo, Mo Chen, Zexian Zeng, Deng Pan
Total views: 2139
The physiology of SARS-CoV-2 virus/host interactions is not well understood. To better understand host/virus interactions, we performed a CRISPR activation screen to identify host genes that confer resistance to authentic SARS-CoV-2. This highlighted 34 new candidate genes that may alter the course of infection. We validated that 7 of these genes can suppress authentic SARS-CoV-2 infection, including the innate immune receptor P selectin, which increases SARS-CoV-2 spike-dependent binding to cells, while protecting from infection. P selectin also promotes binding to SARS-CoV-2 variants, SARS-CoV-1, and Middle East respiratory syndrome spike proteins, suggesting a general role for P selectin in highly pathogenic coronavirus infections. Importantly, P selectin protein expression driven by synthetic mRNA can block SARS-CoV-2 infection. Naturally, P selectin is expressed on platelets, and we show that it promotes spike-mediated platelet aggregation. P selectin is also expressed on the endothelium, where SARS-CoV-2 spike interactions are also P selectin dependent. In vivo, SARS-CoV-2 uses P selectin to home to capillary beds where the virus interacts with platelets and endothelium, and blocking this interaction can clear vascular-associated pulmonary SARS-CoV-2.
Cesar L. Moreno, Fernanda V.S. Castanheira, Alberto Ospina Stella, Felicity Chung, Anupriya Aggarwal, Alexander J. Cole, Lipin Loo, Alexander Dupuy, Yvonne X. Kong, Lejla Hagimola, Jemma Fenwick, Paul R. Coleman, Rebecca Carr, Tian Y. Du, Tim Ison, Michelle Newton, Maxwell P. Bui-Marinos, Scott B. Cohen, Jennifer A. Corcoran, Daniel Hesselson, Jennifer R. Gamble, Freda H. Passam, Stuart G. Turville, Paul Kubes, G. Gregory Neely
Total views: 2131
Resistance to genotoxic therapies remains a major contributor to tumor recurrence and treatment failure, yet the mechanisms by which cancer cells escape these therapies through DNA damage response (DDR) activation are not fully understood. Here, we identify a DDR regulatory pathway in which glycogen synthase kinase 3 β (GSK3B), a multifunctional serine/threonine kinase, governs DNA double-strand break (DSB) repair pathway choice by phosphorylating 53BP1 at threonine 334 (T334) — a site distinct from canonical ATM targets. This phosphorylation event disrupts 53BP1’s interaction with nonhomologous end joining (NHEJ) effectors PTIP and RIF1, promoting their dissociation from DSBs and inhibiting 53BP1-driven NHEJ. Simultaneously, T334 phosphorylation facilitates the recruitment of CtIP and RPA32 for DNA end resection and promotes homologous recombination (HR) by enabling BRCA1 and RAD51 loading. Notably, the phospho-deficient T334A mutant of 53BP1, unlike 53BP1 loss, accumulates aberrantly at DSBs along with PTIP/RIF1, impairs end resection, and suppresses HR activity. Importantly, both genetic and pharmacologic disruption of the GSK3B–53BP1 axis sensitizes tumors to PARP inhibitors (PARPi) independently of BRCA1 status. Together, these findings reveal a GSK3B-dependent mechanism that regulates DSB repair pathway choice and provide a rationale for targeting this axis to enhance PARPi efficacy in solid tumors regardless of BRCA1 status.
Heba S. Allam, Scarlett Acklin-Wehnert, Ratan Sadhukhan, Mousumi Patra, Fen Xia
Total views: 2005
Single-cell studies have revealed that intestinal macrophages maintain gut homeostasis through the balanced actions of reactive (inflammatory) and tolerant (noninflammatory) subpopulations. How such balance is impaired in inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative colitis (UC), remains unresolved. Here, we define colon-specific macrophage states and reveal the critical role of noninflammatory colon-associated macrophages (niColAMs) in IBD recovery. Through trans-scale analyses—integrating computational transcriptomics, proteomics, and in vivo interventional studies—we identified GIV (CCDC88A) as a key regulator of niColAMs. GIV emerged as the top-ranked gene in niColAMs that physically and functionally interacts with NOD2, an innate immune sensor implicated in CD and UC. Myeloid-specific GIV depletion exacerbates infectious colitis, prolongs disease, and abolishes the protective effects of the NOD2 ligand muramyl dipeptide in colitis and sepsis models. Mechanistically, GIV’s C-terminus binds the terminal leucine-rich repeat 10 (LRR 10) of NOD2 and is required for NOD2 to dampen inflammation and clear microbes. The CD-associated 1007fs NOD2 variant, which lacks LRR 10, cannot bind GIV, which provides critical insights into how this clinically relevant variant impairs microbial sensing and clearance. These findings illuminate a critical GIV•NOD2 axis essential for gut homeostasis and highlight its disruption as a driver of dysbiosis and inflammation in IBD.
Gajanan D. Katkar, Mahitha Shree Anandachar, Stella-Rita C. Ibeawuchi, Ella G. McLaren, Megan L. Estanol, Kennith Carpio-Perkins, Shu-Ting Hsu, Celia R. Espinoza, Jane E. Coates, Yashaswat S. Malhotra, Madhubanti Mullick, Vanessa Castillo, Daniella Vo, Saptarshi Sinha, Pradipta Ghosh
Total views: 1774
Venous thromboembolism (VTE) is a leading cause of morbidity and mortality, with risk heightened in premenopausal women with obesity or use estrogen-based oral contraceptives. When both risk factors are present, the thrombosis risk increases substantially. Protein S (PS), an essential anticoagulant cofactor, is downregulated by both estrogen and obesity, but the molecular basis for this suppression remains poorly defined. We investigated the effect of estrogen and obesity on PS expression using plasma samples from 157 women stratified by BMI and contraceptive use, alongside 40 mice categorized as lean or obese with or without estrogen pellet treatment. The levels of PS were reduced by either estrogen or obesity alone, and the combined effect increased thrombin generation. In HepG2 hepatocytes, hypoxic conditions (1%–10% O2) mimicking obesity, with or without 17 β-estradiol, suppressed PROS1 transcription and promoter activity. ChIP confirmed direct binding of hypoxia-inducible factor 1α (HIF1α) to the PROS1 promoter, repressing gene expression. These findings define a mechanistic pathway through which estrogen and obesity converge to suppress PS synthesis, providing insight into the elevated thrombosis risk observed in women with obesity using estrogen-based contraceptives.
Mohammad A. Mohammad, Narender Kumar, Sonali Ghosh, Ashley Paysse, Claudia Leonardi, Vijaya Pilli, Ma Lorena Duhaylungsod, Eric Lazartigues, Diana C. Polania-Villanueva, Sadaf Nouman, Logan A. Barrios, Rima Chattopadhyay, Rafika Yasmin, Alaina Guilbeau, Manoj Kumar, Tina Nguyen, Jovanny Zabaleta, Li Li, Luis Del Valle, Mallory T. Barbier, Samarpan Majumder, Laurent O. Mosnier, Rinku Majumder
Total views: 1769
Intestinal function and white adipose tissue (WAT) function deteriorate with age, but whether and how their deterioration is intertwined remains unknown. Increased gut permeability, microbiota dysbiosis, and aberrant immune microenvironment are the hallmarks of intestinal dysfunctions in aging. Here, we show that subcutaneous WAT dysfunction triggered aging-like intestinal dysfunctions in mouse models. Removal of inguinal subcutaneous WAT (iWAT) increased intestinal permeability and inflammation and altered gut microbiota composition as well as susceptibility to pathogen infection in mouse models. These intestinal dysfunctions were accompanied by a reduction of immunoglobulin A–producing (IgA-producing) cells and IgA biosynthesis in the lamina propria of the small intestine. Retinoic acid (RA) is a key cargo within iWAT-derived extracellular vesicles (iWAT-EVs), which, at least in part, elicits IgA class-switching and production in the small intestine and maintains microbiota homeostasis. RA content in iWAT-EVs and intestinal IgA biosynthesis are reduced during aging in mice. Replenishment of “young” iWAT-EVs rejuvenates intestinal IgA production machinery and shifts microbiota composition of aged mice to a “youth” status, which alleviates leaky gut via RA. In conclusion, our findings suggest that iWAT-EVs with RA orchestrate IgA-mediated gut microbiota homeostasis by acting on intestinal B cells, thereby maintaining intestinal health during aging.
KeKao Long, Pujie Liu, Yi Wang, Jordy Evan Sulaiman, Moinul Hoque, Gloria Hoi Yee Li, Daisy Danyue Zhao, Pui-Kei Lee, Gilman Kit-hang Siu, Annie Wing-tung Lee, Zhuohao Liu, Pui-kin So, Yin Cai, Connie Wai-hong Woo, Chi-bun Chan, Aimin Xu, Kenneth King-yip Cheng
Total views: 1724
Genetic factors contributing to hearing loss (HL) are heterogeneous, and effective medical treatments remain limited. We identified 3 distinct missense variants in CPD, encoding carboxypeptidase D, in 5 individuals with congenital deafness from 3 unrelated families, affecting the catalytically active CP domain 2 of this protein. Subsequent analysis of a larger cohort from the 100,000 Genomes Project revealed an enrichment of rare protein-altering CPD variants in individuals with HL. We show that CPD localizes to sensory epithelium and nerve cells in the mouse cochlea, and the enzymatic activity of CPD, crucial for nitric oxide (NO) production through arginine processing, is impaired in affected individuals. The levels of arginine, NO, and cGMP in patient-derived fibroblasts are also decreased, leading to endoplasmic reticulum stress–mediated responses being triggered in the cells. Silencing of Cpd in organotypic mouse cochlea cultures leads to increased apoptosis. Finally, Drosophila models of CPD deficiency display defective Johnston’s organ, impaired auditory transduction, and sensory and movement abnormalities. Notably, these phenotypes are partially rescued by supplementation with arginine or sildenafil, a cGMP enhancer. Our findings establish CPD mutations as a cause of congenital HL, highlighting that the NO signaling pathway offers a promising therapeutic avenue.
Memoona Ramzan, Natalie Ortiz-Vega, Mohammad Faraz Zafeer, Amanda G. Lobato, Tahir Atik, Clemer Abad, Nirmal Vadgama, Duygu Duman, Nazım Bozan, Enise Avcı Durmuşalioǧlu, Sunny Greene, Shengru Guo, Suna Tokgöz-Yılmaz, Merve Koç Yekedüz, Fatma Tuba Eminoğlu, Mehmet Aydın, Serhat Seyhan, Ioannis Karakikes, Vladimir Camarena, Maria Camila Robayo, Tijana Canic, Güney Bademci, Gaofeng Wang, Amjad Farooq, Mei-ling Joiner, Katherina Walz, Daniel F. Eberl, Jamal Nasir, R. Grace Zhai, Mustafa Tekin
Total views: 1720
Checkpoint inhibitors targeting CTLA-4 and PD-1 revolutionized the treatment of cancer patients, but their use is limited by the emergence of immune-related adverse events (irAEs). We assessed autoreactive B cell frequencies in the blood of cancer patients before and after treatment with checkpoint inhibitors by testing the reactivity of recombinant antibodies cloned from single B cells. We found that anti–PD-1 and anti–CTLA-4 combination therapy induced the emergence of autoreactive mature naive B cells, whereas central B cell tolerance remained functional. In contrast, anti–PD-1 alone did not alter autoreactive B cell counterselection. Anti–CTLA-4 injections in humanized mice also resulted in the production of autoreactive B cells, whereas anti–PD-1 did not. We conclude that CTLA-4 but not PD-1 is required for the removal of developing autoreactive mature naive B cells and that CTLA-4 blockade broadens the peripheral B cell repertoire, which likely contains clones that promote not only irAEs but also antitumor responses.
Elif Çakan, Meng Wang, Yile Dai, Adrien Mirouse, Clarence Rachel Villanueva-Pachas, Delphine Bouis, Joshua M. Boeckers, Ruchi Gera, Sally Yraita, Leslie Clapp, Ana Luisa Perdigoto, Fabien R. Delmotte, Christopher Massad, Antonietta Bacchiocchi, Aaron M. Ring, Yuval Kluger, Harriet M. Kluger, Kevan C. Herold, Eric Meffre
Total views: 1703
Therapies based on glucagon-like peptide-1 (GLP-1) reduce rates of cardiovascular and chronic kidney disease in people with type 2 diabetes and/or obesity, with ongoing clinical trials investigating their effects in people with metabolic liver disease, arthritis, and both substance use and neurodegenerative disorders. Acute and chronic activation of GLP-1 receptor signaling also reduces systemic and tissue inflammation in mice and humans, through weight loss–dependent and –independent mechanisms, actions that may contribute to the expanding spectrum of clinical benefits ascribed to GLP-1 medicines. In this Review, we highlight current understanding of the direct and indirect antiinflammatory effects and mechanisms of GLP-1 medicines in both preclinical and clinical studies, covering emerging concepts, clinical relevance, and areas of uncertainty that require further investigation.
Chi Kin Wong, Daniel J. Drucker
Total views: 6831
Cancer diagnoses are prevalent in people with obesity and type 2 diabetes, and abundant clinical evidence supports the protective effects of weight loss for cancer prevention. Glucagon-like peptide-1 (GLP-1) receptor agonists have revolutionized obesity and type 2 diabetes medicine and alleviate many comorbidities of these metabolic diseases. In this Review, we summarize the current clinical evidence for GLP-1 receptor agonists and cancer risk, including thyroid, pancreatic, gastrointestinal, and hormone-dependent malignancies. With few exceptions, recent meta-analyses report that GLP-1 receptor therapies do not increase cancer incidence and may lower risk in some cases. Preclinical studies reinforce the anticancer effects of GLP-1 receptor therapies, even in non-obese models. However, there are still many opportunities for translational insight as the field grows. Immune-modulating effects of GLP-1 receptor agonists are reported in several preclinical cancer studies, which may reflect direct action on immune cells or result from improved metabolic function. We highlight ongoing clinical trials for GLP-1 receptor therapies in cancer patients, and offer considerations for preclinical studies, including perspectives on the timing and duration of GLP-1 receptor agonist treatment, concurrent use of standard anticancer therapies, and interpretation of models of cancer risk versus progression.
Estefania Valencia-Rincón, Rajani Rai, Vishal Chandra, Elizabeth A. Wellberg
Total views: 3175
Stress has long been associated with substance misuse and substance use disorders (SUDs). The past two decades have seen a surge in research aimed at understanding the underlying mechanisms driving this association. This Review introduces a multilevel “adaptive stress response” framework, encompassing a stress baseline, acute reaction, and recovery with return-to-homeostasis phase that occurs at varying response times and across domains of analysis. It also discusses evidence showing the disruption of this adaptive stress response in the context of chronic and repeated stressors, trauma, adverse social and drug-related environments, as well as with acute and chronic drug misuse and with drug withdrawal and abstinence sequelae. Subjective, cognitive, peripheral, and neurobiological disruptions in the adaptive stress response phases and their link to inflexible, maladaptive coping; increased craving; relapse risk; and maintenance of drug intake are also presented. Finally, the prevention and treatment implications of targeting this “stress pathophysiology of addiction” are discussed, along with specific aspects that may be targeted in intervention development to rescue stress-related alterations in drug motivation and to improve SUD treatment outcomes.
Rajita Sinha
Total views: 2643
Bacteriophage (phage) therapy has emerged as a promising solution to combat the growing crisis of multidrug-resistant (MDR) infections. There are several international centers actively engaged in implementation of phage therapy, and recent case series have reported encouraging success rates in patients receiving personalized, compassionate phage therapy for difficult-to-treat infections. Nonetheless, substantial hurdles remain in the way of more widespread adoption and more consistent success. This Review offers a comprehensive overview of current phage therapy technologies and therapeutic approaches. We first delineate the common steps in phage therapy development, from phage bank establishment to clinical administration, and examine the spectrum of therapeutic approaches, from personalized to fixed phage cocktails. Using the framework of a conventional drug development pipeline, we then identify critical knowledge gaps in areas such as cocktail design, formulation, pharmacology, and clinical trial design. We conclude that, while phage therapy holds promise, a structured drug development pipeline and sustained government support are crucial for widespread adoption of phage therapy for MDR infections.
Minyoung Kevin Kim, Gina A. Suh, Grace D. Cullen, Saumel Perez Rodriguez, Tejas Dharmaraj, Tony Hong Wei Chang, Zhiwei Li, Qingquan Chen, Sabrina I. Green, Rob Lavigne, Jean-Paul Pirnay, Paul L. Bollyky, Jessica C. Sacher
Total views: 2605
Half of adults in the United States have hypertension as defined by clinical practice guidelines. Interestingly, women are generally more likely to be aware of their hypertension and have their blood pressure controlled with treatment compared with men, yet hypertension-related mortality is greater in women. This may reflect the fact that the female sex remains underrepresented in clinical and basic science studies investigating the effectiveness of therapies and the mechanisms controlling blood pressure. This Review provides an overview of the impact of the way hypertension research has explored sex as a biological variable (SABV). Emphasis is placed on epidemiological studies, hypertension clinical trials, the genetics of hypertension, sex differences in immunology and gut microbiota in hypertension, and the effect of sex on the central control of blood pressure. The goal is to offer historical perspective on SABV in hypertension, highlight recent studies that include SABV, and identify key gaps in SABV inclusion and questions that remain in the field. Through continued awareness campaigns and engagement/education at the level of funding agencies, individual investigators, and in the editorial peer review system, investigation of SABV in the field of hypertension research will ultimately lead to improved clinical outcomes.
Michael J. Ryan, John S. Clemmer, Roy O. Mathew, Jessica L. Faulkner, Erin B. Taylor, Justine M. Abais-Battad, Fiona Hollis, Jennifer C. Sullivan
Total views: 2392
Cannabis has been legalized for medical and recreational purposes in multiple countries. A large number of people are using cannabis and some will develop cannabis use disorder (CUD). There is a growing recognition that CUD requires specific interventions. This Review will cover this topic from a variety of perspectives, with a particular emphasis on neurobiological findings and innovative treatment approaches that are being pursued. We will first describe the epidemiology and burden of disease of CUD, including risk factors associated with CUD (both in terms of general risk and genetic risk variants). Neurobiological alterations identified in brain imaging studies will be presented. Several psychosocial interventions that are useful for the management of CUD, including motivational enhancement therapy, behavioral and cognitive therapy, and contingency management, will be covered. Although no pharmacological interventions are yet approved for CUD, we present the most promising pharmacological interventions being tested.
Bernard Le Foll, Victor M. Tang, Sergio Rueda, Leanne V. Trick, Isabelle Boileau
Total views: 2277
Glucagon-like peptide-1 (GLP-1) was initially considered to be a hormone with a predominant role in regulating glucose metabolism by inducing insulin secretion, reducing glucagon secretion, and ameliorating insulin resistance, with the last effect being largely dependent on the induction of weight loss. In more recent years, the role of this peptide beyond metabolism has progressively been explored, including its impact on kidney physiology and kidney clinical outcomes in people with obesity with or without diabetes. Indeed, despite only modest expression of the GLP-1 receptor in the kidney, the renoprotective actions of GLP-1 and its receptor agonists have become an area of intensive investigation. This Review appraises the current status of GLP-1 peptide and its receptor agonists and focuses on the preclinical as well as recent seminal clinical findings defining the kidney benefits conferred by GLP-1 receptor agonist treatment in people living with type 2 diabetes and obesity.
Mark E. Cooper, Daniël H. van Raalte
Total views: 2114
Vitiligo is an autoimmune disease that has been recognized, stigmatized, and treated for millennia. Recent translational research has revealed key mechanisms of disease, including cellular stress, innate immune activation, T cell–mediated elimination of melanocytes from the skin resulting in clinically apparent white spots, as well as stem cell regeneration that reverses established lesions. Many of these pathways have been targeted therapeutically, leading to the first FDA-approved medication to reverse the disease, with many more in clinical trials. Despite these impressive advances, many questions remain, which will be answered through integration of additional basic, translational, and clinical research studies. This vitiligo revolution has led to great excitement for individuals with vitiligo, those who know them, and the dermatologists who care for their patients. But just as importantly, these advances have great potential to shed light on autoimmune diseases that are more difficult to study, possibly leading to treatment advances that could not be achieved otherwise.
Khaled Ezzedine, Rim Tannous, Todd F. Pearson, John E. Harris
Total views: 1718
Myasthenia gravis (MG) stands as a prototypical antibody-mediated autoimmune disease: it is dependent on T cells and characterized by the presence of autoantibodies targeting proteins located on the postsynaptic surface of skeletal muscle, known as the neuromuscular junction. Patients with MG exhibit a spectrum of weakness, ranging from limited ocular muscle involvement to life-threatening respiratory failure. Recent decades have witnessed substantial progress in understanding the underlying pathophysiology, leading to the delineation of distinct subcategories within MG, including MG linked to AChR or MuSK antibodies as well as age-based distinction, thymoma-associated, and immune checkpoint inhibitor–induced MG. This heightened understanding has paved the way for the development of more precise and targeted therapeutic interventions. Notably, the FDA has recently approved therapeutic inhibitors of complement and the IgG receptor FcRn, a testament to our improved comprehension of autoantibody effector mechanisms in MG. In this Review, we delve into the various subgroups of MG, stratified by age, autoantibody type, and histology of the thymus with neoplasms. Furthermore, we explore both current and potential emerging therapeutic strategies, shedding light on the evolving landscape of MG treatment.
Henry J. Kaminski, Patricia Sikorski, S. Isabel Coronel, Linda L. Kusner
Total views: 1634
The genetic landscape of pancreatic ductal adenocarcinoma (PDAC) is well-established and dominated by four key genetic driver mutations. Mutational activation of the KRAS oncogene is the initiating genetic event, followed by genetic loss of function of the CDKN2A, TP53, and SMAD4 tumor suppressor genes. Disappointingly, this information has not been leveraged to develop clinically effective targeted therapies for PDAC treatment, where current standards of care remain cocktails of conventional cytotoxic drugs. Nearly all (~95%) PDAC harbors KRAS mutations, and experimental studies have validated the essential role of KRAS mutation in PDAC tumorigenic and metastatic growth. Identified in 1982 as the first gene shown to be aberrantly activated in human cancer, KRAS has been the focus of intensive drug discovery efforts. Widely considered “undruggable,” KRAS has been the elephant in the room for PDAC treatment. This perception was shattered recently with the approval of two KRAS inhibitors for the treatment of KRASG12C-mutant lung and colorectal cancer, fueling hope that KRAS inhibitors will lead to a breakthrough in PDAC therapy. In this Review, we summarize the key role of aberrant KRAS signaling in the biology of pancreatic cancer; provide an overview of past, current, and emerging anti-KRAS treatment strategies; and discuss current challenges that limit the clinical efficacy of directly targeting KRAS for pancreatic cancer treatment.
Kristina Drizyte-Miller, Taiwo Talabi, Ashwin Somasundaram, Adrienne D. Cox, Channing J. Der
Total views: 1542