Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Oncology

  • 1,374 Articles
  • 14 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 137
  • 138
  • Next →
Identification of serum protein biomarkers for clear cell renal cell carcinoma using patient-derived xenografts
Dalin Zhang, … , Sharon J. Pitteri, James D. Brooks
Dalin Zhang, … , Sharon J. Pitteri, James D. Brooks
Published November 4, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI193567.
View: Text | PDF

Identification of serum protein biomarkers for clear cell renal cell carcinoma using patient-derived xenografts

  • Text
  • PDF
Abstract

Authors

Dalin Zhang, Chun-Lung Chiu, Fernando Jose Garcia Marques, Abel Bermudez, Christian R. Hoerner, Nicholas Hadi, Elise Wang, Thomas J. Metzner, Ludimila Trabanino, John T. Leppert, Hongjuan Zhao, Robert Tibshirani, Alice C. Fan, Sharon J. Pitteri, James D. Brooks

×

IFNγ-driven skewing towards Th1 over Th17 differentiation underlies CRS and neutropenia in CAR-T therapy
Payal Goala, … , Michael D. Jain, Marco L. Davila
Payal Goala, … , Michael D. Jain, Marco L. Davila
Published October 30, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI194631.
View: Text | PDF

IFNγ-driven skewing towards Th1 over Th17 differentiation underlies CRS and neutropenia in CAR-T therapy

  • Text
  • PDF
Abstract

CAR-T therapy has led to significant improvements in patient survival. However, a subset of patients experience high-grade toxicities, including cytokine release syndrome (CRS) and immune cell-associated hematological toxicity (ICAHT). We utilized IL-2Rα knockout mice to model toxicities with elevated levels of IL6, IFNγ, and TNFα and increased M1-like macrophages. Onset of CRS was accompanied by a reduction in peripheral blood neutrophils due to disruption of bone marrow neutrophil homeostasis characterized by an increase in apoptotic neutrophils and a decrease in proliferative and mature neutrophils. Both non-tumor-bearing and Eμ-ALL tumor-bearing mice recapitulated the co-occurrence of CRS and neutropenia. IFNγ-blockade alleviated CRS and neutropenia without affecting CAR-T efficacy. Mechanistically, a Th1-Th17 imbalance was observed to drive co-occurrence of CRS and neutropenia in an IFNγ-dependent manner leading to decreased IL-17A and G-CSF, neutrophil production, and neutrophil survival. In patients, we observed an increase in the IFNγ-to-IL-17A ratio in the peripheral blood during high-grade CRS and neutropenia. We have uncovered a biological basis for ICAHT and provide support for the use of IFNγ-blockade to reduce both CRS and neutropenia.

Authors

Payal Goala, Yongliang Zhang, Nolan J. Beatty, Allan Pavy, Shannon L. McSain, Cooper J. Sailer, Muhammad Junaid Tariq, Showkat Hamid, Eduardo Cortes Gomez, Jianmin Wang, Duna Massillon, Maxwell Ilecki, Justin C. Boucher, Constanza Savid-Frontera, Sae Bom Lee, Hiroshi Kotani, Meredith L. Stone, Michael D. Jain, Marco L. Davila

×

Molecular glue degrader function of SPOP enhances STING-dependent immunotherapy efficacy in melanoma models
Zhichuan Zhu, … , Gianpietro Dotti, Pengda Liu
Zhichuan Zhu, … , Gianpietro Dotti, Pengda Liu
Published October 28, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI191772.
View: Text | PDF

Molecular glue degrader function of SPOP enhances STING-dependent immunotherapy efficacy in melanoma models

  • Text
  • PDF
Abstract

The E3 ligase SPOP plays a context-dependent role in cancer by targeting specific cellular proteins for degradation, thereby influencing cell behavior. However, its role in tumor immunity remains largely unexplored. In this study, we revealed that SPOP targeted the innate immune sensor STING for degradation in a CK1γ phosphorylation-dependent manner to promote melanoma growth. Stabilization of STING by escaping SPOP-mediated degradation enhanced anti-tumor immunity by increasing IFNβ production and ISG expression. Notably, small-molecule SPOP inhibitors not only blocked STING recognition by SPOP, but also acted as molecular glues, redirecting SPOP to target neo-substrates such as CBX4 for degradation. This CBX4 degradation led to increased DNA damage, which in turn activated STING and amplified innate immune responses. In a xenografted melanoma B16 tumor model, single-cell RNA-seq analysis demonstrated that SPOP inhibition induced the infiltration of immune cells associated with anti-PD1 responses. Consequently, SPOP inhibitors synergized with immune checkpoint blockade to suppress B16 tumor growth in syngeneic murine models and enhanced the efficacy of CD19-CAR-T therapy. Our findings highlight a molecular glue degrader property of SPOP inhibitors, with potential implications for other E3 ligase-targeting small molecules designed to disrupt protein-protein interactions.

Authors

Zhichuan Zhu, Xin Zhou, Max Xu, Jianfeng Chen, Kevin C. Robertson, Gatphan N. Atassi, Mark G. Woodcock, Allie C. Mills, Laura E. Herring, Gianpietro Dotti, Pengda Liu

×

Tissue-specific anti-tumor NK cell subsets identified in colorectal cancer liver metastases express candidate therapeutic targets
Joanna Mikulak, … , Cecilia Garlanda, Domenico Mavilio
Joanna Mikulak, … , Cecilia Garlanda, Domenico Mavilio
Published October 28, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI190778.
View: Text | PDF

Tissue-specific anti-tumor NK cell subsets identified in colorectal cancer liver metastases express candidate therapeutic targets

  • Text
  • PDF
Abstract

Liver metastases are relatively resistant to checkpoint blockade immunotherapy. The hepatic tissue has distinctive features including high numbers of NK cells. It was therefore important to conduct in depth single-cell analysis of NK cells in colorectal cancer liver metastases (CRLMs) with the effort to dissect their diversity and to identify candidate therapeutic targets. By combining unbiased single-cell transcriptomic with multiparametric flow cytometry analysis, we identified an abundant family of intrahepatic CD56Bright NK cells in CRLMs endowed with anti-tumor functions resulting from specific transcriptional liver programs. Intrahepatic CD56Bright and CD56Dim NK lymphocytes expressed unique transcription factors (IRF8, TOX2), high level of chemokines, and targetable immune checkpoints (ICs), including CXCR4 and the IL-1 receptor family member IL-1R8. CXCR4 pharmacological blocking and an anti-IL-1R8 mAb enhanced the effector function of CRLM NK cells. Targeting the diversity of liver NK cells and their distinct immune-checkpoint repertoires is key to optimize the current immune-therapy protocols in CRLM.

Authors

Joanna Mikulak, Domenico Supino, Paolo Marzano, Sara Terzoli, Roberta Carriero, Valentina Cazzetta, Rocco Piazza, Elena Bruni, Paolo Kunderfranco, Alessia Donato, Sarah Natalia Mapelli, Roberto Garuti, Silvia Carnevale, Francesco Scavello, Elena Magrini, Jelena Zeleznjak, Clelia Peano, Matteo Donadon, Guido Costa, Guido Torzilli, Alberto Mantovani, Cecilia Garlanda, Domenico Mavilio

×

T-cell acute lymphoblastic leukemia exploits a neural proinflammatory pathway to colonize the meninges
Nitesh D. Sharma, … , Panagiotis Ntziachristos, Ksenia Matlawska-Wasowska
Nitesh D. Sharma, … , Panagiotis Ntziachristos, Ksenia Matlawska-Wasowska
Published October 23, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI188888.
View: Text | PDF

T-cell acute lymphoblastic leukemia exploits a neural proinflammatory pathway to colonize the meninges

  • Text
  • PDF
Abstract

Infiltration of T-cell acute lymphoblastic leukemia (T-ALL) into the meninges worsens prognosis, underscoring the need to understand mechanisms driving meningeal involvement. Here, we show that T-ALL cells expressing CXCR3 exploit normal T-cell function to infiltrate the inflamed meninges. CXCR3 deletion hampered disease progression and extramedullary dissemination by reducing leukemic cell proliferation and migration. Conversely, forced expression of CXCR3 facilitated T-ALL trafficking to the meninges. We identified the ubiquitin-specific protease 7 as a key regulator of CXCR3 protein stability in T-ALL. Furthermore, we discovered elevated levels of CXCL10, a CXCR3 ligand, in the cerebrospinal fluid from T-ALL patients and leukemia-bearing mice. Our studies demonstrate that meningeal stromal cells, specifically pericytes and fibroblasts, induce CXCL10 expression in response to leukemia, and that loss of CXCL10 attenuated T-ALL influx into the meninges. Moreover, we report that leukemia-derived proinflammatory cytokines, TNFα, IL27 and IFNγ, induced CXCL10 in the meningeal stroma. Pharmacological inhibition or deletion of CXCR3 or CXCL10 reduced T-ALL cell migration and adhesion to meningeal stromal cells. Finally, we reveal that CXCR3 and CXCL10 upregulated VLA-4/VCAM-1 signaling, promoting cell-cell adhesion and thus T-ALL retention in the meninges. Our findings highlight the pivotal role of CXCR3-CXCL10 signaling in T-ALL progression and meningeal colonization.

Authors

Nitesh D. Sharma, Esra'a Keewan, Wojciech Ornatowski, Silpita Paul, Monique Nysus, Christopher C. Barnett, Julie Wolfson, Quiteria Jacquez, Bianca L. Myers, Huining Kang, Katherine E. Zychowski, Stuart S. Winter, Mignon L. Loh, Stephen P. Hunger, Eliseo F. Castillo, Tom Taghon, Christina Halsey, Tou Yia Vue, Nicholas Jones, Panagiotis Ntziachristos, Ksenia Matlawska-Wasowska

×

The hematopoietic stem cell MYB enhancer is essential and recurrently amplified during T-cell leukemogenesis
Carea Mullin, … , Russell J.H. Ryan, Mark Y. Chiang
Carea Mullin, … , Russell J.H. Ryan, Mark Y. Chiang
Published October 23, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI187998.
View: Text | PDF

The hematopoietic stem cell MYB enhancer is essential and recurrently amplified during T-cell leukemogenesis

  • Text
  • PDF
Abstract

There is an urgent need to find targeted agents for T-cell acute lymphoblastic leukemia (T-ALL). NOTCH1 is the most frequently mutated oncogene in T-ALL, but clinical trials showed that pan-Notch inhibitors caused dose-limiting toxicities. Thus, we shifted our focus to ETS1, which is one of the transcription factors that most frequently co-bind Notch-occupied regulatory elements in the T-ALL context. To identify the most essential enhancers, we performed a genome-wide CRISPR interference screen of the strongest ETS1-dependent regulatory elements. The #1-ranked element is located in an intron of AHI1 that interacts with the MYB promoter and is amplified with MYB in ~8.5% of T-ALL patients. Using mouse models, we showed that this enhancer promotes self-renewal of hematopoietic stem cells and T-cell leukemogenesis, maintains early T-cell precursors, and restrains myeloid expansion with aging. We named this enhancer the hematopoietic stem cell MYB enhancer (H-Me). The H-Me shows limited activity and function in committed T-cell progenitors but is accessed during leukemogenesis. In one T-ALL context, ETS1 binds the ETS motif in the H-Me to recruit cBAF to promote chromatin accessibility and activation. ETS1 or cBAF degraders impaired H-Me function. Thus, we identified a targetable stem cell element that is co-opted for T-cell transformation.

Authors

Carea Mullin, Karena Lin, Elizabeth Choe, Cher Sha, Zeel Shukla, Koral Campbell, Anna C. McCarter, Annie Wang, Jannaldo Nieves-Salva, Sarah Khan, Theresa M. Keeley, Shannon Liang, Qing Wang, Ashley F. Melnick, Pearl Evans, Alexander C. Monovich, Ashwin Iyer, Rohan Kodgule, Yamei Deng, Felipe da Veiga Leprevost, Kelly R. Barnett, Petri Pölönen, Rami Khoriaty, Daniel Savic, David T. Teachey, Charles G. Mullighan, Marcin Cieslik, Alexey I. Nesvizhskii, Linda C. Samuelson, Morgan Jones, Qing Li, Russell J.H. Ryan, Mark Y. Chiang

×

Targeting STING–induced immune evasion with nanoparticulate binary pharmacology improves tumor control in mice
Fanchao Meng, … , Xiaona Chen, Hangxiang Wang
Fanchao Meng, … , Xiaona Chen, Hangxiang Wang
Published October 23, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI192397.
View: Text | PDF

Targeting STING–induced immune evasion with nanoparticulate binary pharmacology improves tumor control in mice

  • Text
  • PDF
Abstract

Harnessing the stimulator of interferon genes (STING) signaling pathway to trigger innate immune responses has shown remarkable promise in cancer immunotherapy; however, overwhelming resistance to intratumoral STING monotherapy has been witnessed in clinical trials, and the underlying mechanisms remain to be fully explored. Herein, we show that pharmacological STING activation following the intratumoral injection of a non-nucleotide STING agonist (i.e., MSA-2) results in apoptosis of the cytolytic T cells, interferon-mediated overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), and evasion from immune surveillance. We leverage a noncovalent chemical strategy for developing immunomodulatory binary nanoparticles (iBINP) that include both the STING agonist and an IDO1 inhibitor for treating immune-evasive tumors. This iBINP platform developed by dual prodrug engineering and subsequent nanoparticle assembly enables tumor-restricted STING activation and IDO1 inhibition, achieving immune activation while mitigating immune tolerance. A systemic treatment of preclinical models of colorectal cancer with iBINP resulted in robust antitumor immune responses, reduced infiltration of regulatory T cells, and enhanced activity of CD8+ T cells. Importantly, this platform exhibits great therapeutic efficacy by overcoming STING–induced immune evasion and controlling the progression of multiple tumor models. This study unveils the mechanisms by which STING monotherapy induces immunosuppression in the tumor microenvironment and provides a combinatorial strategy for advancing cancer immunotherapies.

Authors

Fanchao Meng, Hengyan Zhu, Shuo Wu, Bohan Li, Xiaona Chen, Hangxiang Wang

×

High 4E-BP-1 expression associates with chromosome 8 gain and CDK4/6 sensitivity in Ewing Sarcoma
Cornelius M. Funk, … , Thomas G.P. Grünewald, Julian Musa
Cornelius M. Funk, … , Thomas G.P. Grünewald, Julian Musa
Published October 16, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI187627.
View: Text | PDF

High 4E-BP-1 expression associates with chromosome 8 gain and CDK4/6 sensitivity in Ewing Sarcoma

  • Text
  • PDF
Abstract

Chromosome 8 (chr8) gains are common in cancer, but their contribution to tumor heterogeneity is largely unexplored. Ewing sarcoma (EwS) is defined by FET::ETS fusions with few other recurrent mutations to explain clinical diversity. In EwS, chr8 gains are the second most frequent alteration, making it an ideal model to study their relevance in an otherwise silent genomic context. We report that chr8 gain-driven expression patterns correlate with poor overall survival of EwS patients. This effect is mainly mediated by increased expression of the translation initiation factor binding protein 4E-BP1, encoded by EIF4EBP1 on chr8. Among all chr8-encoded genes, EIF4EBP1 expression showed the strongest association with poor survival and correlated with chr8 gains in EwS tumors. Similar findings emerged across multiple TCGA cancer entities. Multi-omics profiling revealed that 4E-BP1 orchestrates a pro-proliferative proteomic network. Silencing 4E-BP1 reduced proliferation, clonogenicity, spheroidal growth in vitro, and tumor growth in vivo. Drug screens demonstrated that high 4E-BP1 expression sensitizes EwS to pharmacological CDK4/6-inhibition. Chr8 gains and elevated 4E-BP1 emerge as prognostic biomarkers in EwS, with poor outcomes driven by 4E-BP1-mediated pro-proliferative networks that sensitize tumors to CDK4/6 inhibitors. Testing for chr8 gains may enhance risk stratification and therapy in EwS and other cancers.

Authors

Cornelius M. Funk, Anna C. Ehlers, Martin F. Orth, Karim Aljakouch, Jing Li, Tilman L.B. Hoelting, Rainer Will, Florian H. Geyer, A. Katharina Ceranski, Franziska Willis, Endrit Vinca, Shunya Ohmura, Roland Imle, Jana Siebenlist, Angelina Yershova, Maximilian M.L. Knott, Felina Zahnow, Ana Sastre, Javier Alonso, Felix Sahm, Heike Peterziel, Anna Loboda, Martin Schneider, Ana Banito, Gabriel Leprivier, Wolfgang Hartmann, Uta Dirksen, Olaf Witt, Ina Oehme, Stefan M. Pfister, Laura Romero-Pérez, Jeroen Krijgsveld, Florencia Cidre-Aranaz, Thomas G.P. Grünewald, Julian Musa

×

PIM3-mediated phosphorylation stabilizes myeloid leukemia factor 2 to promote metastasis in osteosarcoma
Cuiling Zeng, … , Tiebang Kang, Dan Liao
Cuiling Zeng, … , Tiebang Kang, Dan Liao
Published October 15, 2025
Citation Information: J Clin Invest. 2025;135(20):e191040. https://doi.org/10.1172/JCI191040.
View: Text | PDF

PIM3-mediated phosphorylation stabilizes myeloid leukemia factor 2 to promote metastasis in osteosarcoma

  • Text
  • PDF
Abstract

Osteosarcoma is the most common primary malignant bone cancer, characterized by a high incidence of lung metastasis and a lack of therapeutic targets. Here, by combining an in vivo CRISPR activation screen with the interactome of STUB1, a tumor suppressor in osteosarcoma, we identified that myeloid leukemia factor 2 (MLF2) promotes osteosarcoma metastasis. Mechanistically, MLF2 disrupted the interaction between BiP and IRE1α, thereby activating the IRE1α/XBP1-S-MMP9 axis. The E3 ligase STUB1 ubiquitinated MLF2 at Lys119 and targeted it for proteasomal degradation, whereas PIM3-mediated phosphorylation of MLF2 at Ser65 enhanced its stabilizing interaction with USP21. Our findings demonstrate that the PIM3/MLF2 axis is a critical regulator of osteosarcoma lung metastasis. We propose PIM3 as a potential therapeutic target for patients with osteosarcoma lung metastasis.

Authors

Cuiling Zeng, Xin Wang, Jinkun Zhong, Yu Zhang, Ju Deng, Wenqiang Liu, Weixuan Chen, Xinhao Yu, Dian Lin, Ruhua Zhang, Shang Wang, Jianpei Lao, Qi Zhao, Li Zhong, Tiebang Kang, Dan Liao

×

RCC2 and CD24 cooperate to modulate prostate cancer progression through vimentin ubiquitination and β-catenin activation
Xuelian Cui, … , Jiangbing Zhou, Runhua Liu
Xuelian Cui, … , Jiangbing Zhou, Runhua Liu
Published October 15, 2025
Citation Information: J Clin Invest. 2025;135(20):e192883. https://doi.org/10.1172/JCI192883.
View: Text | PDF

RCC2 and CD24 cooperate to modulate prostate cancer progression through vimentin ubiquitination and β-catenin activation

  • Text
  • PDF
Abstract

CD24 promotes prostate cancer progression and metastasis by disrupting the ARF-NPM interaction and impairing p53 signaling. However, the mechanisms underlying CD24-driven metastasis remain unclear. This study identifies a novel interaction between CD24 and Regulator of Chromosome Condensation 2 (RCC2), a protein involved in cell proliferation and migration. IHC analysis of prostate adenocarcinoma samples showed frequent coexpression of CD24 (49%) and RCC2 (82%) with a positive correlation between coexpression of CD24 (49%) and RCC2 (82%). Functional assays revealed complex roles: RCC2 KO suppressed proliferation but increased migration and invasion, while CD24 KO reduced both proliferation and migration. Dual KO of CD24 and RCC2 further inhibited proliferation but had varied effects on migration. In mouse xenografts, RCC2 KO increased lung metastasis without significantly affecting primary tumor growth, while CD24 KO reduced both tumor growth and metastasis. Mechanistically, RCC2 controls migration by promoting ubiquitination and degradation of vimentin, affecting cytoskeletal dynamics. In contrast, CD24 targets RCC2 for degradation, thereby regulating β-catenin signaling. Notably, RCC2 KO enhances β-catenin activity by suppressing inhibitors AXIN2 and APC, whereas CD24 KO inhibits this pathway. These findings reveal a regulatory loop where CD24 and RCC2 reciprocally control proliferation and metastasis, positioning the CD24-RCC2 axis as a promising therapeutic target in prostate cancer.

Authors

Xuelian Cui, Yicun Wang, Chao Zhang, Zhichao Liu, Haiyan Yu, Lizhong Wang, Jiangbing Zhou, Runhua Liu

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 137
  • 138
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
E2F8 keeps liver cancer at bay
Alain de Bruin, Gustavo Leone, and colleagues find that the E2F8-mediated transcriptional repression in the developing liver suppresses hepatocellular carcinoma later in life …
Published July 25, 2016
Scientific Show StopperOncology

AIDing and abetting UV-independent skin cancer
Taichiro Nonaka and colleagues find that AID plays a role in the development of inflammation-driven, non-UV skin cancer
Published March 14, 2016
Scientific Show StopperOncology

CD37 keeps B cell lymphoma at bay
Charlotte de Winde, Sharon Veenbergen, and colleagues demonstrate that loss of CD37 expression relieves SOCS3-mediated suppression of IL-6 signaling and supports the development of B cell lymphoma…
Published January 19, 2016
Scientific Show StopperOncology

Maintaining endometrial epithelial barrier function
Jessica Bowser and colleagues identify a mechanism by which loss of CD73 promotes endometrial cancer progression…
Published December 7, 2015
Scientific Show StopperOncology

Sleuthing out the cellular source of hepatocellular carcinoma
Xueru Mu, Regina Español-Suñer, and colleagues show that tumors in murine hepatocellular carcinoma models are derived from hepatocytes and not from other liver resident cells …
Published September 8, 2015
Scientific Show StopperOncology

Live animal imaging in the far red
Ming Zhang and colleagues developed a far-red-absorbing reporter/probe system that can be used to image live animals and overcomes imaging limitations associated with conventional systems that use lower wavelengths of light…
Published September 8, 2015
Scientific Show StopperTechnical AdvanceOncology

Cancer cells fight off stress with ATF4
Souvik Dey, Carly Sayers, and colleagues reveal that activation of heme oxygenase 1 by ATF4 protects cancer cells from ECM detachment-induced death and promotes metastasis…
Published May 26, 2015
Scientific Show StopperOncology

Smothering Von Hippel-Lindau syndrome-associated phenotypes
Ana Metelo and colleagues demonstrate that specific inhibition of HIF2a ameliorates VHL-associated phenotypes and improves survival in a zebrafish model of disease…
Published April 13, 2015
Scientific Show StopperOncology

Blazing the trail for metastasis
Jill Westcott, Amanda Prechtl, and colleagues identify an epigenetically distinct population of breast cancer cells that promotes collective invasion…
Published April 6, 2015
Scientific Show StopperOncology

Dynamic focal adhesions
Wies van Roosmalen, Sylvia E. Le Dévédec, and colleagues screen for genes that alter cancer cell migration and demonstrate that SRPK1 promotes metastasis...
Published March 16, 2015
Scientific Show StopperOncology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts