Neuroretinal degenerations including retinitis pigmentosa (RP) comprise a heterogeneous collection of pathogenic mutations that ultimately result in blindness. Despite recent advances in precision medicine, therapies for rarer mutations are hindered by burdensome developmental costs. To this end, Von Hippel-Lindau (VHL) is an attractive therapeutic target to treat RP. By ablating VHL in rod photoreceptors and elevating hypoxia-inducible factor (HIF) levels, we demonstrate a path to therapeutically enhancing glycolysis independent of the underlying genetic variant that slows degeneration of both rod and cone photoreceptors in a preclinical model of retinitis pigmentosa. This rod-specific intervention also resulted in reciprocal, decreased glycolytic activity within the retinal pigment epithelium (RPE) cells despite no direct genetic modifications to the RPE. Suppressing glycolysis in the RPE provided notable, non-cell-autonomous therapeutic benefits to the photoreceptors, indicative of metabolically sensitive crosstalk between different cellular compartments of the retina. Surprisingly, targeting HIF2A in RPE cells did not impact RPE glycolysis, potentially implicating HIF1A as a major regulator in mouse RPE and providing a rationale for future therapeutic efforts aimed at modulating RPE metabolism.
Salvatore Marco Caruso, Xuan Cui, Brian M. Robbings, Noah Heaps, Aykut Demikrol, Bruna Lopes da Costa, Daniel T. Hass, Peter M.J. Quinn, Jianhai Du, James B. Hurley, Stephen H. Tsang
Glioblastoma (GBM) is a highly aggressive form of brain tumor characterized by dysregulated metabolism. Increased fatty acid oxidation (FAO) protects tumor cells from lipid peroxidation-induced cell death, although the precise mechanisms involved remain unclear. Herein, we report that loss of tumor necrosis factor receptor-associated factor 3 (TRAF3) in GBM critically regulates lipid peroxidation and tumorigenesis by controlling the oxidation of polyunsaturated fatty acids (PUFAs). TRAF3 is frequently repressed in GBM due to promoter hypermethylation. TRAF3 interacts with enoyl-CoA hydratase 1 (ECH1), an enzyme catalyzing the isomerization of unsaturated fatty acids (UFAs), and mediates K63-linked ubiquitination of ECH1 at Lys214. ECH1 ubiquitination impedes TOMM20-dependent mitochondrial translocation of ECH1, which otherwise promotes the oxidation of UFAs, preferentially the PUFAs, and limits lipid peroxidation. Overexpression of TRAF3 enhances the sensitivity of GBM to ferroptosis and anti-PD-L1 immunotherapy in mice. Thus, the TRAF3-ECH1 axis plays a key role in the metabolism of PUFAs, and is crucial for lipid peroxidation damage and immune elimination in GBM.
Yu Zeng, Liqian Zhao, Kunlin Zeng, Ziling Zhan, Zhengming Zhan, Shangbiao Li, Hongchao Zhan, Peng Chai, Cheng Xie, Shengfeng Ding, Yuxin Xie, Li Wang, Cuiying Li, Xiaoxia Chen, Daogang Guan, Enguang Bi, Jian-you Liao, Fan Deng, Xiaochun Bai, Ye Song, Aidong Zhou
Evi J.C. Koene, Amée M. Buziau, David Cassiman, Timothy M. Cox, Judith Bons, Jean L. J. M. Scheijen, Casper G. Schalkwijk, Steven J.R. Meex, Aditi R. Saxena, William P. Esler, Vera B. Schrauwen-Hinderling, Patrick Schrauwen, Martijn C.G.J. Brouwers
Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss. We also showed that the cysteine proteome of skeletal muscle functioned as a redox buffer in WT and mdx muscle during ECCs, but that buffer capacity in mdx muscle was significantly compromised by elevated basal protein oxidation. Finally, chemo-proteomic data suggested that H2S protected several proteins central to muscle contraction against irreversible oxidation through persulfidation-based priming. Our results support a unifying, redox-based mechanism of ECC force loss in mdx muscle.
W. Michael Southern, Erynn E. Johnson, Elizabeth K. Fasbender, Katherine S. Fallon, Courtney L. Cavazos, Dawn A. Lowe, George G. Rodney, James M. Ervasti
Hematopoietic stem cells (HSCs) rely on self-renewal to sustain stem cell potential and undergo differentiation to generate mature blood cells. Mitochondrial fatty acid β-oxidation (FAO) is essential for HSC maintenance. However, the role of Carnitine palmitoyl transferase 1a (CPT1A), a key enzyme in FAO, remains unclear in HSCs. Using a Cpt1a hematopoietic specific conditional knock-out (Cpt1aΔ/Δ) mouse model, we found that loss of Cpt1a leads to HSC defects, including loss of HSC quiescence and self-renewal, and increased differentiation. Mechanistically, we find that loss of Cpt1a results in elevated levels of mitochondrial respiratory chain complex components and their activities, as well as increased ATP production, and accumulation of mitochondrial reactive oxygen species (mitoROS) in HSCs. Taken together, this suggests hyperactivation of mitochondria and metabolic rewiring via upregulated glucose-fueled oxidative phosphorylation (OXPHOS). In summary, our findings demonstrate a novel role for Cpt1a in HSC maintenance and provide insight into the regulation of mitochondrial metabolism via control of the balance between FAO and glucose-fueled OXPHOS.
Jue Li, Jie Bai, Vincent T. Pham, Michihiro Hashimoto, Maiko Sezaki, Qili Shi, Qiushi Jin, Chenhui He, Amy Armstrong, Tian Li, Mingzhe Pan, Shujun Liu, Yu Luan, Hui Zeng, Paul R. Andreassen, Gang Huang
Vitamin D regulates mineral homeostasis. The most biologically active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), is synthesized by CYP27B1 from 25-dihydroxyvitamin D (25D) and inactivated by CYP24A1. Human monogenic diseases and genome-wide association studies support a critical role for CYP24A1 in regulation of mineral homeostasis, but little is known about its tissue-specific effects. Here, we describe the responses of mice with inducible global deletion, kidney-specific, and intestine-specific deletion of Cyp24a1 to dietary calcium challenge and chronic kidney disease (CKD). Global and kidney-specific Cyp24a1 deletion caused similar syndromes of systemic vitamin D intoxication: elevated circulating 1,25D, 25D and fibroblast growth factor 23 (FGF23), activation of vitamin D target genes in the kidney and intestine, hypercalcemia, and suppressed parathyroid hormone (PTH). In contrast, mice with intestine-specific Cyp24a1 deletion demonstrated activation of vitamin D target genes exclusively in the intestine despite no changes in systemic vitamin D levels. In response to a high calcium diet, PTH was suppressed despite normal serum calcium. In mice with CKD, intestinal Cyp24a1 deletion decreased PTH and FGF23 without precipitating hypercalcemia. These results implicate kidney CYP24A1 in systemic vitamin D regulation while independent local effects of intestinal CYP24A1 could be targeted to treat secondary hyperparathyroidism in CKD.
Michaela A.A. Fuchs, Alexander Grabner, Melody Shi, Susan L. Murray, Emily J. Burke, Nejla Latic, Venkataramana Thiriveedi, Jatin Roper, Shintaro Ide, Koki Abe, Hiroki Kitai, Tomokazu Souma, Myles Wolf
Previous studies highlight the potential for sodium-glucose cotransporter type 2 (SGLT2) inhibitors (SGLT2i) to exert cardioprotective effects in heart failure by increasing plasma ketones and shifting myocardial fuel utilization toward ketone oxidation. However, SGLT2i have multiple in vivo effects and the differential impact of SGLT2i treatment and ketone supplementation on cardiac metabolism remains unclear. Here, using gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–tandem mass spectrometry (LC-MS/MS) methodology combined with infusions of [13C6]glucose or [13C4]βOHB, we demonstrate that acute SGLT2 inhibition with dapagliflozin shifts relative rates of myocardial mitochondrial metabolism toward ketone oxidation, decreasing pyruvate oxidation with little effect on fatty acid oxidation in awake rats. Shifts in myocardial ketone oxidation persisted when plasma glucose levels were maintained. In contrast, acute βOHB infusion similarly augmented ketone oxidation, but markedly reduced fatty acid oxidation and did not alter glucose uptake or pyruvate oxidation. After inducing heart failure, dapagliflozin increased relative rates of ketone and fatty acid oxidation, but decreased pyruvate oxidation. Dapagliflozin increased mitochondrial redox and reduced myocardial oxidative stress in heart failure, which was associated with improvements in left ventricular ejection fraction after 3 weeks of treatment. Thus, SGLT2i have pleiotropic effects on systemic and heart metabolism, which are distinct from ketone supplementation and may contribute to the long-term cardioprotective benefits of SGLT2i.
Leigh Goedeke, Yina Ma, Rafael C. Gaspar, Ali Nasiri, Jieun Lee, Dongyan Zhang, Katrine Douglas Galsgaard, Xiaoyue Hu, Jiasheng Zhang, Nicole Guerrera, Xiruo Li, Traci LaMoia, Brandon T. Hubbard, Sofie Haedersdal, Xiaohong Wu, John Stack, Sylvie Dufour, Gina Marie Butrico, Mario Kahn, Rachel J. Perry, Gary W. Cline, Lawrence H. Young, Gerald I. Shulman
Ischemic acute kidney injury (AKI) is common in hospitalized patients and increases the risk for chronic kidney disease (CKD). Impaired endothelial cell (EC) functions are thought to contribute in AKI to CKD transition, but the underlying mechanisms remain unclear. Here, we identify a critical role for endothelial oxygen sensing prolyl hydroxylase domain (PHD) enzymes 1-3 in regulating post-ischemic kidney repair. In renal endothelium, we observed compartment-specific differences in the expression of the three PHD isoforms in both mice and humans. Post-ischemic concurrent inactivation of endothelial PHD1, PHD2, and PHD3 but not PHD2 alone promoted maladaptive kidney repair characterized by exacerbated tissue injury, fibrosis, and inflammation. Single-cell RNA-seq analysis of the post-ischemic endothelial PHD1, PHD2 and PHD3 deficient (PHDTiEC) kidney revealed an endothelial hypoxia and glycolysis related gene signature, also observed in human kidneys with severe AKI. This metabolic program was coupled to upregulation of the SLC16A3 gene encoding the lactate exporter monocarboxylate transporter 4 (MCT4). Strikingly, treatment with the MCT4 inhibitor syrosingopine restored adaptive kidney repair in PHDTiEC mice. Mechanistically, MCT4 inhibition suppressed pro-inflammatory EC activation reducing monocyte-endothelial cell interaction. Our findings suggest avenues for halting AKI to CKD transition based on selectively targeting the endothelial hypoxia-driven glycolysis/MCT4 axis.
Ratnakar Tiwari, Rajni Sharma, Ganeshkumar Rajendran, Gabriella S. Borkowski, Si Young An, Michael Schonfeld, James O'Sullivan, Matthew J. Schipma, Yalu Zhou, Guillaume Courbon, Benjamin R. Thomson, Valentin David, Susan E. Quaggin, Edward B. Thorp, Navdeep S. Chandel, Pinelopi P. Kapitsinou
Glioblastoma (GBM), an aggressive brain malignancy with a cellular hierarchy dominated by GBM stem cells (GSCs), evades antitumor immunity through mechanisms that remain incompletely understood. Like most cancers, GBMs undergo metabolic reprogramming toward glycolysis to generate lactate. Here, we show that lactate production by patient-derived GSCs and microglia/macrophages induces tumor cell epigenetic reprogramming through histone lactylation, an activating modification that leads to immunosuppressive transcriptional programs and suppression of phagocytosis via transcriptional upregulation of CD47, a “don’t eat me” signal, in GBM cells. Leveraging these findings, pharmacologic targeting of lactate production augments efficacy of anti-CD47 therapy. Mechanistically, lactylated histone interacts with the heterochromatin component chromobox protein homolog 3 (CBX3). Although CBX3 does not possess direct lactyltransferase activity, CBX3 binds histone acetyltransferase (HAT) EP300 to induce increased EP300 substrate specificity toward lactyl-CoA and a transcriptional shift toward an immunosuppressive cytokine profile. Targeting CBX3 inhibits tumor growth by both tumor cell–intrinsic mechanisms and increased tumor cell phagocytosis. Collectively, these results suggest that lactate mediates metabolism-induced epigenetic reprogramming in GBM that contributes to CD47-dependent immune evasion, which can be leveraged to augment efficacy of immuno-oncology therapies.
Shuai Wang, Tengfei Huang, Qiulian Wu, Huairui Yuan, Xujia Wu, Fanen Yuan, Tingting Duan, Suchet Taori, Yingming Zhao, Nathaniel W. Snyder, Dimitris G. Placantonakis, Jeremy N. Rich
BACKGROUND. In type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism. METHODS. Young adults with T1D (n = 30) and healthy controls (HC, n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA sequencing, and spatial metabolomics to assess this relationship. RESULTS. Participants with T1D had significantly higher glomerular basement membrane thickness compared to HC. T1D participants exhibited lower insulin sensitivity and cortical oxidative metabolism, correlating with higher insulin sensitivity. Proximal tubular transcripts of TCA cycle and oxidative phosphorylation enzymes were lower in T1D. Spatial metabolomics showed reductions in tubular TCA cycle intermediates, indicating mitochondrial dysfunction. The Slingshot algorithm identified a lineage of proximal tubular cells progressing from stable to adaptive/maladaptive subtypes, using pseudotime trajectory analysis, which computationally orders cells along a continuum of states. This analysis revealed distinct distribution patterns between T1D and HC, with attenuated oxidative metabolism in T1D attributed to a greater proportion of adaptive/maladaptive subtypes with low expression of TCA cycle and oxidative phosphorylation transcripts. Pseudotime progression associated with higher HbA1c, BMI, GBM, and lower insulin sensitivity and cortical oxidative metabolism. CONCLUSION. These early structural and metabolic changes in T1D kidneys may precede clinical DKD. TRIAL REGISTRATION. ClinicalTrials.gov NCT04074668
Ye Ji Choi, Gabriel Richard, Guanshi Zhang, Jeffrey B. Hodgin, Dawit S. Demeke, Yingbao Yang, Jennifer A. Schaub, Ian M. Tamayo, Bhupendra K. Gurung, Abhijit S. Naik, Viji Nair, Carissa Birznieks, Alexis MacDonald, Phoom Narongkiatikhun, Susan Gross, Lynette Driscoll, Maureen Flynn, Kalie Tommerdahl, Kristen J. Nadeau, Viral N. Shah, Tim Vigers, Janet K. Snell-Bergeon, Jessica Kendrick, Daniel H. van Raalte, Lu-Ping Li, Pottumarthi Prasad, Patricia Ladd, Bennett B. Chin, David Z. Cherney, Phillip J. McCown, Fadhl Alakwaa, Edgar A. Otto, Frank C. Brosius, Pierre Jean Saulnier, Victor G. Puelles, Jesse A. Goodrich, Kelly Street, Manjeri A. Venkatachalam, Aaron Ruiz, Ian H. de Boer, Robert G. Nelson, Laura Pyle, Denis P. Blondin, Kumar Sharma, Matthias Kretzler, Petter Bjornstad