Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • Nuclear Receptors (Apr 2017)
    • Metabolism and Inflammation (Jan 2017)
    • Hypoxia and Inflammation (Oct 2016)
    • View all review series...
  • Collections
    • Recently published
    • Commentaries
    • Concise Communication
    • Editorials
    • Opinion
    • Scientific Show Stoppers
    • Top read articles
    • In-Press Preview
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Metabolism

  • 391 Articles
  • 2 Posts
  • ←
  • 1
  • 2
  • 3
  • …
  • 39
  • 40
  • →
Insulin regulates astrocyte gliotransmission and modulates behavior
Weikang Cai, … , Emmanuel N. Pothos, C. Ronald Kahn
Weikang Cai, … , Emmanuel N. Pothos, C. Ronald Kahn
Published April 17, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99366.
View: Text | PDF

Insulin regulates astrocyte gliotransmission and modulates behavior

  • Text
  • PDF
Abstract

Complications of diabetes affect tissues throughout body, including central nervous system. Epidemiological studies show that diabetic patients have increased risk of depression, anxiety, age-related cognitive decline and Alzheimer’s disease. Mice lacking insulin receptor in brain or on hypothalamic neurons display an array of metabolic abnormalities, however, the role of insulin action on astrocytes and neurobehaviors remains less well-studied. Here, we demonstrate that astrocytes are a direct insulin target in the brain and that knockout of IR on astrocytes causes increased anxiety and depressive-like behaviors in mice. This can be reproduced in part by deletion of IR on astrocytes in the nucleus accumbens. At a molecular level, loss of insulin signaling in astrocytes impaired tyrosine phosphorylation of Munc18c. This led to decreased exocytosis of ATP from astrocytes, resulting in decreased purinergic signaling on dopaminergic neurons. These reductions contributed to decreased dopamine release from brain slices. Central administration of ATP analogues could reverse depressive-like behaviors in mice with astrocyte IR knockout. Thus, astrocytic insulin signaling plays an important role in dopaminergic signaling, providing a potential mechanism by which astrocytic insulin action may contribute to increased rates of depression in people with diabetes, obesity and other insulin resistant states.

Authors

Weikang Cai, Chang Xue, Masaji Sakaguchi, Masahiro Konishi, Alireza Shirazian, Heather A. Ferris, Mengyao Li, Ruichao Yu, Andre Kleinridders, Emmanuel N. Pothos, C. Ronald Kahn

×

Neuronal hypothalamic regulation of body metabolism and bone density is galanin-dependent
Anna Idelevich, … , Francesca Gori, Roland Baron
Anna Idelevich, … , Francesca Gori, Roland Baron
Published March 29, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99350.
View: Text | PDF

Neuronal hypothalamic regulation of body metabolism and bone density is galanin-dependent

  • Text
  • PDF
Abstract

In the brain, the ventral hypothalamus (VHT) regulates energy and bone metabolism. Whether this regulation uses the same or different neuronal circuits is unknown. Alteration of AP1 signaling in the VHT increases energy expenditure, glucose utilization, and bone density, yet the specific neurons responsible for each or all of these phenotypes are not identified. Using neuron-specific genetically targeted AP1 alterations as a tool in adult mice, we found that AgRP- or POMC- expressing neurons, predominantly present in the arcuate nucleus (ARC) within the VHT, stimulate whole body energy expenditure, glucose utilization and bone formation and density, although their effects on bone resorption differed. In contrast, AP1 alterations in Steroidogenic factor 1 (SF1)-expressing neurons, present in the ventromedial hypothalamus (VMH), increase energy, but decrease bone density, suggesting that these effects are independent. Altered AP1 signaling also increased the levels of the neuromediator galanin in the hypothalamus and global galanin deletion, VHT galanin silencing using shRNA, or pharmacological galanin receptor blockade, counteracted the observed effects on energy and bone. Thus, AP1 antagonism reveals that AgRP- and POMC- expressing neurons can stimulate body metabolism and increase bone density, with galanin acting as a central downstream effector. The results obtained with SF1-expressing neurons, however, indicate that bone homeostasis is not always dictated by the global energy status, and vice versa.

Authors

Anna Idelevich, Kazusa Sato, Kenichi Nagano, Glenn Rowe, Francesca Gori, Roland Baron

×

PPARγ deacetylation dissociates thiazolidinedione’s metabolic benefits from its adverse effects
Michael J. Kraakman, … , Remi J. Creusot, Li Qiang
Michael J. Kraakman, … , Remi J. Creusot, Li Qiang
Published March 27, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98709.
View: Text | PDF

PPARγ deacetylation dissociates thiazolidinedione’s metabolic benefits from its adverse effects

  • Text
  • PDF
Abstract

Thiazolidinediones (TZDs) are PPARγ agonists with potent insulin-sensitizing effects. However, their use has been curtailed by significant adverse effects on weight, bone, heart, and hemodynamic balance. TZDs induce the deacetylation of PPARγ on K268 and K293 to cause the browning of white adipocytes. Here we showed that targeted PPARγ mutations resulting in constitutive deacetylation (K268R/K293R, 2KR) increased energy expenditure, and protected from visceral adiposity and diet-induced obesity by augmenting brown remodeling of white adipose tissues. Strikingly, when 2KR mice were treated with rosiglitazone, they maintained the insulin-sensitizing, glucose-lowering response to TZDs, while displaying little, if any, adverse effects on fat deposition, bone density, fluid retention, and cardiac hypertrophy. Thus, deacetylation appears to fulfill the goal of dissociating the metabolic benefits of PPARγ activation from its adverse effects. Strategies to leverage PPARγ deacetylation may lead to the design of safer, more effective agonists of this nuclear receptor in the treatment of metabolic diseases.

Authors

Michael J. Kraakman, Qiongming Liu, Jorge Postigo-Fernandez, Ruiping Ji, Ning Kon, Delfina Larrea, Maria Namwanje, Lihong Fan, Michelle Chan, Estela Area-Gomez, Wenxian Fu, Remi J. Creusot, Li Qiang

×

Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice
Miguel A. Lanaspa, … , Richard J. Johnson, Dean R. Tolan
Miguel A. Lanaspa, … , Richard J. Johnson, Dean R. Tolan
Published March 13, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI94427.
View: Text | PDF

Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice

  • Text
  • PDF
Abstract

Increasing evidence suggests a role for excessive intake of fructose in the Western diet as a contributor to the current epidemics of metabolic syndrome and obesity. Hereditary fructose intolerance (HFI) is a difficult and potentially lethal orphan disease associated with impaired fructose metabolism. In HFI, the deficiency of a particular aldolase, aldolase B, results in the accumulation of intracellular phosphorylated fructose thus leading to phosphate sequestration and depletion, increased ATP turnover and a plethora of conditions leading to clinical manifestations including fatty liver, hyperuricemia, Fanconi syndrome and severe hypoglycemia. Unfortunately, to date, there is no treatment for HFI and avoiding sugar and fructose in our society has become quite challenging. In this report, through use of genetically modified mice and pharmacological inhibitors, we demonstrate that the absence or inhibition of ketohexokinase (Khk), an enzyme upstream of aldolase B, is sufficient to prevent hypoglycemia and liver and intestinal injury associated with HFI using aldolase B knockout mice. We thus provide evidence for the first time of a potential therapeutic approach for this condition. Mechanistically, our studies suggest that it is the inhibition of the Khk C isoform, not the A isoform, that protects animals from HFI.

Authors

Miguel A. Lanaspa, Ana Andres-Hernando, David J. Orlicky, Christina Cicerchi, Cholsoon Jang, Nanxing Li, Tamara Milagres, Masanari Kuwabara, Michael F. Wempe, Joshua D. Rabinowitz, Richard J. Johnson, Dean R. Tolan

×

Insulin resistance causes inflammation in adipose tissue
Mitsugu Shimobayashi, … , Ralph Peterli, Michael N. Hall
Mitsugu Shimobayashi, … , Ralph Peterli, Michael N. Hall
Published March 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96139.
View: Text | PDF

Insulin resistance causes inflammation in adipose tissue

  • Text
  • PDF
Abstract

Obesity is a major risk factor for insulin resistance and type 2 diabetes. In adipose tissue, obesity-mediated insulin resistance correlates with the accumulation of proinflammatory macrophages and inflammation. However, the causal relationship of these events is unclear. Here, we report that obesity-induced insulin resistance in mice precedes macrophage accumulation and inflammation in adipose tissue. Using a mouse model that combines genetically induced, adipose-specific insulin resistance (mTORC2-knockout) and diet-induced obesity, we found that insulin resistance causes local accumulation of proinflammatory macrophages. Mechanistically, insulin resistance in adipocytes results in production of the chemokine monocyte chemoattractant protein 1 (MCP1), which recruits monocytes and activates proinflammatory macrophages. Finally, insulin resistance (high homeostatic model assessment of insulin resistance [HOMA-IR]) correlated with reduced insulin/mTORC2 signaling and elevated MCP1 production in visceral adipose tissue from obese human subjects. Our findings suggest that insulin resistance in adipose tissue leads to inflammation rather than vice versa.

Authors

Mitsugu Shimobayashi, Verena Albert, Bettina Woelnerhanssen, Irina C. Frei, Diana Weissenberger, Anne Christin Meyer-Gerspach, Nicolas Clement, Suzette Moes, Marco Colombi, Jerome A. Meier, Marta M. Swierczynska, Paul Jenö, Christoph Beglinger, Ralph Peterli, Michael N. Hall

×

Chronic fractalkine administration improves glucose tolerance and pancreatic endocrine function
Matthew Riopel, … , Jerrold M. Olefsky, Yun Sok Lee
Matthew Riopel, … , Jerrold M. Olefsky, Yun Sok Lee
Published March 5, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI94330.
View: Text | PDF

Chronic fractalkine administration improves glucose tolerance and pancreatic endocrine function

  • Text
  • PDF
Abstract

We have previously reported that the fractalkine (FKN)/CX3CR1 system represents a novel regulatory mechanism for insulin secretion and β cell function. Here, we demonstrate that chronic administration of a long-acting form of FKN, FKN-Fc, can exert durable effects to improve glucose tolerance with increased glucose-stimulated insulin secretion and decreased β cell apoptosis in obese rodent models. Unexpectedly, chronic FKN-Fc administration also led to decreased α cell glucagon secretion. In islet cells, FKN inhibited ATP-sensitive potassium channel conductance by an ERK-dependent mechanism, which triggered β cell action potential (AP) firing and decreased α cell AP amplitude. This results in increased glucose-stimulated insulin secretion and decreased glucagon secretion. Beyond its islet effects, FKN-Fc also exerted peripheral effects to enhance hepatic insulin sensitivity due to inhibition of glucagon action. In hepatocytes, FKN treatment reduced glucagon-stimulated cAMP production and CREB phosphorylation in a pertussis toxin–sensitive manner. Together, these results raise the possibility of use of FKN-based therapy to improve type 2 diabetes by increasing both insulin secretion and insulin sensitivity.

Authors

Matthew Riopel, Jong Bae Seo, Gautam K. Bandyopadhyay, Pingping Li, Joshua Wollam, Heekyung Chung, Seung-Ryoung Jung, Anne Murphy, Maria Wilson, Ron de Jong, Sanjay Patel, Deepika Balakrishna, James Bilakovics, Andrea Fanjul, Artur Plonowski, Duk-Su Koh, Christopher J. Larson, Jerrold M. Olefsky, Yun Sok Lee

×

Hypothalamic ER–associated degradation regulates POMC maturation, feeding, and age-associated obesity
Geun Hyang Kim, … , Martin G. Myers Jr., Ling Qi
Geun Hyang Kim, … , Martin G. Myers Jr., Ling Qi
Published February 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96420.
View: Text | PDF

Hypothalamic ER–associated degradation regulates POMC maturation, feeding, and age-associated obesity

  • Text
  • PDF
Abstract

Pro-opiomelanocortin (POMC) neurons function as key regulators of metabolism and physiology by releasing prohormone-derived neuropeptides with distinct biological activities. However, our understanding of early events in prohormone maturation in the ER remains incomplete. Highlighting the significance of this gap in knowledge, a single POMC cysteine-to-phenylalanine mutation at position 28 (POMC-C28F) is defective for ER processing and causes early onset obesity in a dominant-negative manner in humans through an unclear mechanism. Here, we report a pathologically important role of Sel1L-Hrd1, the protein complex of ER-associated degradation (ERAD), within POMC neurons. Mice with POMC neuron–specific Sel1L deficiency developed age-associated obesity due, at least in part, to the ER retention of POMC that led to hyperphagia. The Sel1L-Hrd1 complex targets a fraction of nascent POMC molecules for ubiquitination and proteasomal degradation, preventing accumulation of misfolded and aggregated POMC, thereby ensuring that another fraction of POMC can undergo normal posttranslational processing and trafficking for secretion. Moreover, we found that the disease-associated POMC-C28F mutant evades ERAD and becomes aggregated due to the presence of a highly reactive unpaired cysteine thiol at position 50. Thus, this study not only identifies ERAD as an important mechanism regulating POMC maturation within the ER, but also provides insights into the pathogenesis of monogenic obesity associated with defective prohormone folding.

Authors

Geun Hyang Kim, Guojun Shi, Diane R.M. Somlo, Leena Haataja, Soobin Song, Qiaoming Long, Eduardo A. Nillni, Malcolm J. Low, Peter Arvan, Martin G. Myers Jr., Ling Qi

×

Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity
Risheng Ye, … , Joachim Herz, Philipp E. Scherer
Risheng Ye, … , Joachim Herz, Philipp E. Scherer
Published February 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97702.
View: Text | PDF

Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity

  • Text
  • PDF
Abstract

The compensatory proliferation of insulin-producing β cells is critical to maintaining glucose homeostasis at the early stage of type 2 diabetes. Failure of β cells to proliferate results in hyperglycemia and insulin dependence in patients. To understand the effect of the interplay between β cell compensation and lipid metabolism upon obesity and peripheral insulin resistance, we eliminated LDL receptor–related protein 1 (LRP1), a pleiotropic mediator of cholesterol, insulin, energy metabolism, and other cellular processes, in β cells. Upon high-fat diet exposure, LRP1 ablation significantly impaired insulin secretion and proliferation of β cells. The diminished insulin signaling was partly contributed to by the hypersensitivity to glucose-induced, Ca2+-dependent activation of Erk and the mTORC1 effector p85 S6K1. Surprisingly, in LRP1-deficient islets, lipotoxic sphingolipids were mitigated by improved lipid metabolism, mediated at least in part by the master transcriptional regulator PPARγ2. Acute overexpression of PPARγ2 in β cells impaired insulin signaling and insulin secretion. Elimination of Apbb2, a functional regulator of LRP1 cytoplasmic domain, also impaired β cell function in a similar fashion. In summary, our results uncover the double-edged effects of intracellular lipid metabolism on β cell function and viability in obesity and type 2 diabetes and highlight LRP1 as an essential regulator of these processes.

Authors

Risheng Ye, Ruth Gordillo, Mengle Shao, Toshiharu Onodera, Zhe Chen, Shiuhwei Chen, Xiaoli Lin, Jeffrey A. SoRelle, Xiaohong Li, Miao Tang, Mark P. Keller, Regina Kuliawat, Alan D. Attie, Rana K. Gupta, William L. Holland, Bruce Beutler, Joachim Herz, Philipp E. Scherer

×

FoxO transcription factors are required for hepatic HDL-cholesterol clearance
Samuel X. Lee, … , Franz Rinninger, Rebecca A. Haeusler
Samuel X. Lee, … , Franz Rinninger, Rebecca A. Haeusler
Published February 6, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI94230.
View: Text | PDF

FoxO transcription factors are required for hepatic HDL-cholesterol clearance

  • Text
  • PDF
Abstract

Insulin resistance and type 2 diabetes are associated with low levels of high-density lipoprotein-cholesterol (HDL-C). The insulin-repressible FoxO transcription factors are potential mediators of insulin’s effect on HDL-C. FoxOs mediate a substantial portion of insulin-regulated transcription, and poor FoxO repression is thought to contribute to the excessive glucose production in diabetes. In this work, we show that mice with liver-specific triple FoxO knockout (L-FoxO1,3,4), which are known to have reduced hepatic glucose production, also have increased HDL-C. This was associated with decreased expression of HDL-C clearance factors, scavenger receptor class B type I (SR-BI) and hepatic lipase, and defective selective uptake of HDL-cholesteryl ester by the liver. The phenotype could be rescued by re-expression of SR-BI. These findings demonstrate that hepatic FoxOs are required for cholesterol homeostasis and HDL-mediated reverse cholesterol transport to the liver.

Authors

Samuel X. Lee, Markus Heine, Christian Schlein, Rajasekhar Ramakrishnan, Jing Liu, Gabriella Belnavis, Ido Haimi, Alexander W. Fischer, Henry Ginsberg, Joerg Heeren, Franz Rinninger, Rebecca A. Haeusler

×

Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer
Sun-Hye Jeong, … , Hueng-Sik Choi, Dae-Sik Lim
Sun-Hye Jeong, … , Hueng-Sik Choi, Dae-Sik Lim
Published February 5, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI95802.
View: Text | PDF

Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer

  • Text
  • PDF
Abstract

Nonalcoholic fatty liver disease (NAFLD) is a major risk factor for liver cancer; therefore, its prevention is an important clinical goal. Ablation of phosphatase and tensin homolog (PTEN) or the protein kinase Hippo signaling pathway induces liver cancer via activation of AKT or the transcriptional regulators YAP/TAZ, respectively; however, the potential for crosstalk between the PTEN/AKT and Hippo/YAP/TAZ pathways in liver tumorigenesis has thus far remained unclear. Here, we have shown that deletion of both PTEN and SAV1 in the liver accelerates the development of NAFLD and liver cancer in mice. At the molecular level, activation of YAP/TAZ in the liver of Pten–/– Sav1–/– mice amplified AKT signaling through the upregulation of insulin receptor substrate 2 (IRS2) expression. Both ablation of YAP/TAZ and activation of the Hippo pathway could rescue these phenotypes. A high level of YAP/ TAZ expression was associated with a high level of IRS2 expression in human hepatocellular carcinoma (HCC). Moreover, treatment with the AKT inhibitor MK-2206 or knockout of IRS2 by AAV-Cas9 successfully repressed liver tumorigenesis in Pten–/– Sav1–/– mice. Thus, our findings suggest that Hippo signaling interacts with AKT signaling by regulating IRS2 expression to prevent NAFLD and liver cancer progression and provide evidence that impaired crosstalk between these 2 pathways accelerates NAFLD and liver cancer.

Authors

Sun-Hye Jeong, Han-Byul Kim, Min-Chul Kim, Ji-min Lee, Jae Ho Lee, Jeong-Hwan Kim, Jin-Woo Kim, Woong-Yang Park, Seon-Young Kim, Jae Bum Kim, Haeryoung Kim, Jin-Man Kim, Hueng-Sik Choi, Dae-Sik Lim

×
  • ←
  • 1
  • 2
  • 3
  • …
  • 39
  • 40
  • →
Using SORLA to sort out human obesity
Vanessa Schmidt and colleagues demonstrate that the intracellular sorting receptor SORLA is an important regulator of lipid metabolism…
Published June 20, 2016
Scientific Show StopperMetabolism
Thumb fig. 10a

Intracellular calcium leak recasts β cell landscape
Gaetano Santulli and colleagues reveal that RyR2 calcium channels in pancreatic β cells mediate insulin release and glucose homeostasis…
Published April 6, 2015
Scientific Show StopperMetabolism
Thumb may b  79273
Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2018 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts