Atherosclerosis arises from disrupted cholesterol metabolism, notably impaired macrophage cholesterol efflux leading to foam cell formation. Through single-cell and bulk RNA sequencing, we identified Listerin as a regulator of macrophage cholesterol metabolism. Listerin expression increased during atherosclerosis progression in humans and rodents. Its deficiency suppressed cholesterol efflux, promoted foam cell formation, and exacerbated plaque features (macrophage infiltration, lipid deposition, necrotic cores) in macrophage-specific knockout mice. Conversely, Listerin overexpression attenuated these atherosclerotic manifestations. Mechanistically, Listerin stabilizes ABCA1, a key cholesterol efflux mediator, by catalyzing K63-linked polyubiquitination at residues K1884/K1957, countering ESCRT-mediated lysosomal degradation of ABCA1 induced by oxLDL. ABCA1 agonist Erythrodiol restored cholesterol efflux in Listerin-deficient macrophages, while ABCA1 knockout abolished Listerin's effects in THP-1 cells. This study establishes Listerin as a protective factor in atherosclerosis via post-translational stabilization of ABCA1, offering a potential therapeutic strategy targeting ABCA1 ubiquitination to enhance cholesterol efflux.
Lei Cao, Jie Zhang, Liwen Yu, Wei Yang, Wenqian Qi, Ruiqing Ren, Yapeng Liu, Yonghao Hou, Yu Cao, Qian Li, Xiaohong Wang, Zhengguo zhang, Bo Li, Wenhai Sui, Yun Zhang, Chengjiang Gao, Cheng Zhang, Meng Zhang
Myxomatous valve disease (MVD) is the most common form of cardiac valve disease in the developed world. A small fraction of MVD is syndromic and arises in association with matrix protein defects such as those in Marfan syndrome, but most MVD is acquired later in life through an undefined pathogenesis. The KLF2/4 transcription factors mediate endothelial fluid shear responses, including those required to create cardiac valves during embryonic development. Here we test the role of hemodynamic shear forces and downstream endothelial KLF2/4 in mature cardiac valves. We find that loss of hemodynamic forces in heterotopically transplanted hearts or genetic deletion of KLF2/4 in cardiac valve endothelium confers valve cell proliferation and matrix deposition associated with valve thickening, findings also observed in mice expressing the mutant fibrillin-1 protein known to cause human MVD. Transcriptomic and histologic analysis reveals increased monocyte recruitment and TGF-β signaling in both fibrillin-1–mutant valves and valves lacking hemodynamic forces or endothelial KLF2/4 function, but only loss of TGF-β/SMAD signaling rescued myxomatous changes. We observed reduced KLF2/4 expression and augmented SMAD signaling in human MVD. These studies identify hemodynamic activation of endothelial KLF2/4 as an environmental homeostatic regulator of cardiac valves and suggest that non-syndromic MVD may arise in association with disturbed blood flow across the aging valve.
Jesse A. Pace, Lauren M. Goddard, Courtney C. Hong, Liqing Wang, Jisheng Yang, Mei Chen, Yitian Xu, Martin H. Dominguez, Siqi Gao, Xiaowen Chen, Patricia Mericko-Ishizuka, Can Tan, Tsutomu Kume, Wenbao Yu, Kai Tan, Wayne W. Hancock, Giovanni Ferrari, Mark L. Kahn
Lara Haase, Anouar Belkacemi, Laura Neises, Nicole Kiweler, Christine Wesely, Rosanna Huchzermeier, Maja Bozic, Arefeh Khakdan, Marta Sánchez, Arnaud Mary, Nadja Sachs, Hanna Winter, Enrico Glaab, Michael T. Heneka, Emiel P.C. van der Vorst, Michel Mittelbronn, Johannes Meiser, Jochen G. Schneider
Mitral valve prolapse is often benign but progression to mitral regurgitation may require invasive intervention and there is no specific medical therapy. An association of mitral valve prolapse with Marfan syndrome resulting from pathogenic FBN1 variants supports the use of hypomorphic fibrillin-1 mgR mice to investigate mechanisms and therapy for mitral valve disease. mgR mice developed severe myxomatous mitral valve degeneration with mitral regurgitation by 12 weeks of age. Persistent activation of TGF-β and mTOR signaling along with macrophage recruitment preceded histological changes at 4 weeks of age. Short-term mTOR inhibition with rapamycin from 4 to 5 weeks of age prevented TGF-β overactivity and leukocytic infiltrates, while long-term inhibition of mTOR or TGF-β signaling from 4 to 12 weeks of age rescued mitral valve leaflet degeneration. Transcriptomic analysis identified integrins as key receptors in signaling interactions and serologic neutralization of integrin signaling or a chimeric integrin receptor altering signaling prevented mTOR activation. We confirmed increased mTOR signaling and a conserved transcriptome signature in human specimens of sporadic mitral valve prolapse. Thus, mTOR activation from abnormal integrin-dependent cell-matrix interactions drives TGF-β overactivity and myxomatous mitral valve degeneration, and mTOR inhibition may prevent disease progression of mitral valve prolapse.
Fu Gao, Qixin Chen, Makoto Mori, Sufang Li, Giovanni Ferrari, Markus Krane, Rong Fan, George Tellides, Yang Liu, Arnar Geirsson
Atherosclerosis is a slowly progressing inflammatory disease characterized with cholesterol disorder and intimal plaques. Asparagine endopeptidase (AEP) is an endolysosomal protease that is activated under acidic conditions and is elevated substantially in both plasma and plaques of patients with atherosclerosis. However, how AEP accelerates atherosclerosis development remains incompletely understood, especially from the view of cholesterol metabolism. This project aims to reveal the crucial substrate of AEP during atherosclerosis plaque formation and to lay the foundation for developing novel therapeutic agents for Atherosclerosis. Here, we show that AEP is augmented in the atherosclerosis plaques obtained from patients and proteolytically cuts apolipoprotein A1 (APOA1) and impairs cholesterol efflux and high-density lipoprotein (HDL) formation, facilitating atherosclerosis pathologies. AEP is activated in the liver and aorta of apolipoprotein E–null (APOE-null) mice, and deletion of AEP from APOE–/– mice attenuates atherosclerosis. APOA1, an essential lipoprotein in HDL for cholesterol efflux, is cleaved by AEP at N208 residue in the liver and atherosclerotic macrophages of APOE–/– mice. Blockade of APOA1 cleavage by AEP via N208A mutation or its specific inhibitor, #11a, substantially diminishes atherosclerosis in both APOE–/– and LDLR–/– mice. Hence, our findings support that AEP disrupts cholesterol metabolism and accelerates the development of atherosclerosis.
Mengmeng Wang, Bowei Li, Shuke Nie, Xin Meng, Guangxing Wang, Menghan Yang, Wenxin Dang, Kangning He, Tucheng Sun, Ping Xu, Xifei Yang, Keqiang Ye
Aortic aneurysm is a high-risk cardiovascular disease without effective cure. Vascular Smooth Muscle Cell (VSMC) phenotypic switching is a key step in the pathogenesis of aortic aneurysm. Here, we revealed the role of histidine triad nucleotide-binding protein 1 (HINT1) in aortic aneurysm. HINT1 was upregulated both in aortic tissue from patients with aortic aneurysm and Ang II-induced aortic aneurysm mice. VSMC-specific HINT1 deletion alleviated aortic aneurysm via preventing VSMC phenotypic switching. With the stimulation of pathological factors, the increased nuclear translocation of HINT1 mediated by nucleoporin 98 (Nup98) promoted the interaction between HINT1 and transcription factor AP-2 alpha (TFAP2A) and further triggered the transcription of integrin alpha 6 (ITGA6) mediated by TFAP2A, and consequently activated the downstream focal adhesion kinase (FAK)/STAT3 signal pathway, leading to aggravation of VSMC phenotypic switching and aortic aneurysm. Importantly, Defactinib treatment was demonstrated to limit aortic aneurysm development by inhibiting the FAK signal pathway. Thus, HINT1/ITGA6/FAK axis emerges as potential therapeutic strategies in aortic aneurysm.
Yan Zhang, Wencheng Wu, Xuehui Yang, Shanshan Luo, Xiaoqian Wang, Qiang Da, Ke Yan, Lulu Hu, Shixiu Sun, Xiaolong Du, Xiaoqiang Li, Zhijian Han, Feng Chen, Aihua Gu, Liansheng Wang, Zhiren Zhang, Bo Yu, Chenghui Yan, Yaling Han, Yi Han, Liping Xie, Yong Ji
Long-standing hypertension (HTN) affects multiple organs and leads to pathologic arterial remodeling, which is driven by smooth muscle cell (SMC) plasticity. To identify relevant genes regulating SMC function in HTN, we considered Genome Wide Association Studies (GWAS) of blood pressure, focusing on genes encoding epigenetic enzymes, which control SMC fate in cardiovascular disease. Using statistical fine mapping of the KDM6 (JMJD3) locus, we found that rs62059712 is the most likely casual variant, with each major T allele copy associated with a 0.47 mmHg increase in systolic blood pressure. We show that the T allele decreased JMJD3 transcription in SMCs via decreased SP1 binding to the JMJD3 promoter. Using our unique SMC-specific Jmjd3-deficient murine model (Jmjd3flox/floxMyh11CreERT), we show that loss of Jmjd3 in SMCs results in HTN due to decreased EDNRB expression and increased EDNRA expression. Importantly, the Endothelin Receptor A antagonist, BQ-123, reversed HTN after Jmjd3 deletion in vivo. Additionally, single cell RNA-sequencing (scRNA-seq) of human arteries revealed strong correlation between JMJD3 and EDNRB in SMCs. Further, JMJD3 is required for SMC-specific gene expression, and loss of JMJD3 in SMCs increased HTN-induced arterial remodeling. Our findings link a HTN-associated human DNA variant with regulation of SMC plasticity, revealing targets that may be used in personalized management of HTN.
Kevin D Mangum, Qinmengge Li, Katherine Hartmann, Tyler M Bauer, Sonya J. Wolf, James Shadiow, Jadie Y. Moon, Emily Barrett, Amrita Joshi, Gabriela Saldana de Jimenez, Sabrina A. Rocco, Zara Ahmed, Rachael Bogle, Kylie Boyer, Andrea Obi, Frank M Davis, Lin Chang, Lam Tsoi, Johann Gudjonsson, Scott M. Damrauer, Katherine Gallagher
Regulatory T (Treg) cells modulate immune responses and attenuate inflammation. Extracellular vesicles from human cardiosphere-derived cells (CDC-EVs) enhance Treg proliferation and IL10 production, but the mechanisms remain unclear. Here we focus on BCYRN1, a long noncoding RNA (lncRNA) highly abundant in CDC-EVs, and its role in Treg cell function. BCYRN1 acts as a "microRNA sponge," inhibiting miR-138, miR-150, and miR-98. Suppression of these miRs leads to increased Treg cell proliferation via ATG7-dependent autophagy, CCR6-dependent Treg migration, and enhanced Treg IL10 production. In a mouse model of myocardial infarction, CDC-EVs, particularly those overexpressing BCYRN1, were cardioprotective, reducing infarct size and troponin I levels even when administered after reperfusion. Underlying the cardioprotection, we verified that CDC-EVs overexpressing BCYRN1 increased cardiac Treg infiltration, proliferation, and IL10 production in vivo. These salutary effects were negated when BCYRN1 levels were reduced in CDC-EVs, or when Tregs were depleted systemically. Thus, we have identified BCYRN1 as a booster of Treg number and bioactivity, rationalizing its cardioprotective efficacy. While here we studied BCYRN1 overexpression in the context of ischemic injury, the same approach merits testing in other disease processes (e.g., autoimmunity or transplant rejection) where increased Treg activity is a recognized therapeutic goal.
Ke Liao, Jiayi Yu, Akbarshakh Akhmerov, Zahra Mohammadigoldar, Liang Li, Weixin Liu, Natasha Anders, Ahmed G.E. Ibrahim, Eduardo Marbán
Red blood cells (RBCs) induce endothelial dysfunction in type 2 diabetes (T2D), but the mechanism by which RBCs communicate with the vessel is unknown. This study tested the hypothesis that extracellular vesicles (EVs) secreted by RBCs act as mediators of endothelial dysfunction in T2D. Despite a lower production of EVs derived from RBCs of T2D patients (T2D RBC-EVs), their uptake by endothelial cells was greater than that of EVs derived from RBCs of healthy individuals (H RBC-EVs). T2D RBC-EVs impaired endothelium-dependent relaxation and this effect was attenuated following inhibition of arginase in EVs. Inhibition of vascular arginase or oxidative stress also attenuated endothelial dysfunction induced by T2D RBC-EVs. Arginase-1 was detected in RBC-derived EVs, and arginase-1 and oxidative stress were increased in endothelial cells following co-incubation with T2D RBC-EVs. T2D RBC-EVs also increased arginase-1 protein in endothelial cells following mRNA silencing and in the endothelium of aortas from endothelial cell arginase 1 knockout mice. It is concluded that T2D-RBCs induce endothelial dysfunction through increased uptake of EVs that transfer arginase-1 from RBCs to the endothelium to induce oxidative stress and endothelial dysfunction. These results shed important light on the mechanism underlying endothelial injury mediated by RBCs in T2D.
Aida Collado, Rawan Humoud, Eftychia Kontidou, Maria Eldh, Jasmin Swaich, Allan Zhao, Jiangning Yang, Tong Jiao, Elena Domingo, Emelie Carlestål, Ali Mahdi, John Tengbom, Ákos Végvári, Qiaolin Deng, Michael Alvarsson, Susanne Gabrielsson, Per Eriksson, Zhichao Zhou, John Pernow
Aortic aneurysms are potentially fatal focal enlargements of the aortic lumen; the disease burden disease is increasing as the human population ages. Pathological oxidative stress is implicated in development of aortic aneurysms. We pursued a chemogenetic approach to create an animal model of aortic aneurysm formation using a transgenic mouse line DAAO-TGTie2 that expresses yeast D-amino acid oxidase (DAAO) under control of the endothelial Tie2 promoter. In DAAO-TGTie2 mice, DAAO generates the reactive oxygen species hydrogen peroxide (H2O2) in endothelial cells only when provided with D-amino acids. When DAAO-TGTie2 mice are chronically fed D-alanine, the animals become hypertensive and develop abdominal but not thoracic aortic aneurysms. Generation of H2O2 in the endothelium leads to oxidative stress throughout the vascular wall. Proteomic analyses indicate that the oxidant-modulated protein kinase JNK1 is dephosphorylated by the phophoprotein phosphatase DUSP3 in abdominal but not thoracic aorta, causing activation of KLF4-dependent transcriptional pathways that trigger phenotypic switching and aneurysm formation. Pharmacological DUSP3 inhibition completely blocks aneurysm formation caused by chemogenetic oxidative stress. These studies establish that regional differences in oxidant-modulated signaling pathways lead to differential disease progression in discrete vascular beds, and identify DUSP3 as a potential pharmacological target for the treatment of aortic aneurysms.
Apabrita Ayan Das, Markus Waldeck-Weiermair, Shambhu Yadav, Fotios Spyropoulos, Arvind Pandey, Tanoy Dutta, Taylor A. Covington, Thomas Michel