Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

Articles in this category appear as authors submitted them for publication, prior to copyediting and publication layout.
Antithrombin-binding heparan sulfate is ubiquitously expressed in epithelial cells and suppresses pancreatic tumorigenesis
3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and...
Published September 16, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI184172.
View: Text | PDF
Research In-Press Preview Cell biology Oncology

Antithrombin-binding heparan sulfate is ubiquitously expressed in epithelial cells and suppresses pancreatic tumorigenesis

  • Text
  • PDF
Abstract

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid. Here we show that HSAT is ubiquitously expressed in the basement membranes of epithelial cells in multiple tissues. In the pancreas, HSAT is expressed by healthy ductal cells and its expression is increased in premalignant pancreatic intraepithelial neoplasia lesions (PanINs), but not in pancreatic ductal adenocarcinoma (PDAC). Inactivation of HS3ST1, a key enzyme in HSAT synthesis, in PDAC cells eliminated HSAT expression, induced an inflammatory phenotype, suppressed markers of apoptosis, and increased metastasis in an experimental mouse PDAC model. HSAT-positive PDAC cells bind AT, which inhibits the generation of active thrombin by tissue factor (TF) and Factor VIIa. Furthermore, plasma from PDAC patients showed accumulation of HSAT suggesting its potential as a marker of tumor formation. These findings suggest that HSAT exerts a tumor suppressing function through recruitment of AT and that the decrease in HSAT during progression of pancreatic tumorigenesis increases inflammation and metastatic potential.

Authors

Thomas Mandel Clausen, Ryan J. Weiss, Jacob R. Tremblay, Benjamin P. Kellman, Joanna Coker, Leo A. Dworkin, Jessica P. Rodriguez, Ivy M. Chang, Timothy Chen, Vikram Padala, Richard Karlsson, Hyemin Song, Kristina L. Peck, Satoshi Ogawa, Daniel R. Sandoval, Hiren J. Joshi, Gaowei Wang, L. Paige Ferguson, Nikita Bhalerao, Allison Moores, Tannishtha Reya, Maike Sander, Thomas C. Caffrey, Jean L. Grem, Alexandra Aicher, Christopher Heeschen, Dzung Le, Nathan E. Lewis, Michael A. Hollingsworth, Paul M. Grandgenett, Susan L. Bellis, Rebecca L. Miller, Mark M. Fuster, David W. Dawson, Dannielle D. Engle, Jeffrey D. Esko

×

Endothelial STING and STAT1 mediate interferon-independent effects of IL-6 in an endotoxemia-induced model of shock
Severe systemic inflammatory reactions, including sepsis, often lead to shock, organ failure and death, in part through an acute release of cytokines that promote vascular dysfunction. However,...
Published September 16, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI189570.
View: Text | PDF
Research In-Press Preview Inflammation Vascular biology

Endothelial STING and STAT1 mediate interferon-independent effects of IL-6 in an endotoxemia-induced model of shock

  • Text
  • PDF
Abstract

Severe systemic inflammatory reactions, including sepsis, often lead to shock, organ failure and death, in part through an acute release of cytokines that promote vascular dysfunction. However, little is known about the vascular endothelial signaling pathways regulating the transcriptional profile in failing organs. This work focuses on signaling downstream of IL-6, due to its clinical importance as a biomarker for disease severity and predictor of mortality. Here, we show that loss of endothelial expression of the IL-6 pathway inhibitor, SOCS3, promoted a type I interferon (IFNI)-like gene signature in response to endotoxemia in mouse kidneys and brains. In cultured primary human endothelial cells, IL-6 induced a transient IFNI-like gene expression in a non-canonical, interferon-independent fashion. We further show that STAT3, which we had previously shown to control IL-6-driven endothelial barrier function, was dispensable for this activity. Instead, IL-6 promoted a transient increase in cytosolic mitochondrial DNA and required STAT1, cGAS, STING, and the IRFs 1, 3, and 4. Inhibition of this pathway in endothelial-specific STING knockout mice or global STAT1 knockout mice led to reduced severity of an acute endotoxemic challenge and prevented the endotoxin-induced IFNI-like gene signature. These results suggest that permeability and DNA sensing responses are driven by parallel pathways downstream of this cytokine, provide new insights into the complex response to acute inflammatory responses, and offer the possibility of potential novel therapeutic strategies for independently controlling the intracellular responses to IL-6 in order to tailor the inflammatory response.

Authors

Nina Martino, Erin K. Sanders, Ramon Bossardi Ramos, Iria Di John Portela, Fatma Awadalla, Shuhan Lu, Dareen Chuy, Neil Poddar, Mei Xing G Zuo, Uma Balasubramanian, Peter A. Vincent, Pilar Alcaide, Alejandro P. Adam

×

Maintenance DNA methylation is required for induced Treg reparative function following viral pneumonia in mice
FOXP3+ natural regulatory T cells (nTregs) promote resolution of inflammation and repair of epithelial damage following viral pneumonia-induced lung injury, thus representing a cellular therapy for...
Published September 16, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI192925.
View: Text | PDF
Research In-Press Preview Immunology Inflammation Pulmonology

Maintenance DNA methylation is required for induced Treg reparative function following viral pneumonia in mice

  • Text
  • PDF
Abstract

FOXP3+ natural regulatory T cells (nTregs) promote resolution of inflammation and repair of epithelial damage following viral pneumonia-induced lung injury, thus representing a cellular therapy for patients with severe viral pneumonia and the acute respiratory distress syndrome (ARDS). Whether in vitro induced Tregs (iTregs), which can be rapidly generated in substantial numbers from conventional T cells, also promote lung recovery is unknown. nTregs require specific DNA methylation patterns maintained by the epigenetic regulator, ubiquitin-like with PHD and RING finger domains 1 (UHRF1). Here, we tested whether iTregs promote recovery following viral pneumonia and whether iTregs require UHRF1 for their pro-recovery function. We found that adoptive transfer of iTregs to mice with influenza virus pneumonia promotes lung recovery and that loss of UHRF1-mediated maintenance DNA methylation in iTregs leads to reduced engraftment and a delayed repair response. Transcriptional and DNA methylation profiling of adoptively transferred UHRF1-deficient iTregs that had trafficked to influenza-injured lungs demonstrated transcriptional instability with gain of effector T cell lineage-defining transcription factors. Strategies to promote the stability of iTregs could be leveraged to further augment their pro-recovery function during viral pneumonia and other causes of severe lung injury.

Authors

Anthony M. Joudi, Jonathan K Gurkan, Qianli Liu, Elizabeth M. Steinert, Manuel A. Torres Acosta, Kathryn A. Helmin, Luisa Morales-Nebreda, Nurbek Mambetsariev, Carla Patricia Reyes Flores, Hiam Abdala-Valencia, Samuel E. Weinberg, Benjamin D. Singer

×

Fatty acid transport protein-2 inhibition enhances glucose tolerance through α-cell-mediated GLP-1 secretion
Type 2 diabetes affects more than 38 million people in the US, and a major complication is kidney disease. During the analysis of lipotoxicity in diabetic kidney disease, global fatty acid...
Published September 16, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI192011.
View: Text | PDF
Research In-Press Preview Endocrinology Metabolism

Fatty acid transport protein-2 inhibition enhances glucose tolerance through α-cell-mediated GLP-1 secretion

  • Text
  • PDF
Abstract

Type 2 diabetes affects more than 38 million people in the US, and a major complication is kidney disease. During the analysis of lipotoxicity in diabetic kidney disease, global fatty acid transport protein-2 (FATP2) gene deletion was noted to markedly reduce plasma glucose in db/db mice due to sustained insulin secretion. To identify the mechanism, we observed that islet FATP2 expression was restricted to α-cells, and α-cell FATP2 was functional. Basal glucagon and alanine-stimulated gluconeogenesis were reduced in FATP2KO db/db compared to db/db mice. Direct evidence of FATP2KO-induced α-cell-mediated glucagon-like peptide-1 (GLP-1) secretion included increased GLP-1-positive α-cell mass in FATP2KO db/db mice, small molecule FATP2 inhibitor enhancement of GLP-1 secretion in αTC1-6 cells and human islets, and exendin[9-39]-inhibitable insulin secretion in FATP2 inhibitor-treated human islets. FATP2-dependent enteroendocrine GLP-1 secretion was excluded by demonstration of similar glucose tolerance and plasma GLP-1 concentrations in db/db FATP2KO mice following oral versus intraperitoneal glucose loading, non-overlapping FATP2 and preproglucagon mRNA expression, and lack of FATP2/GLP-1 co-immunolocalization in intestine. We conclude that FATP2 deletion or inhibition exerts glucose-lowering effects through α-cell-mediated GLP-1 secretion and paracrine ß-cell insulin release.

Authors

Shenaz Khan, Robert J. Gaivin, Zhiyu Liu, Vincent Li, Ivy Samuels, Jinsook Son, Patrick Osei-Owusu, Jeffrey L. Garvin, Domenico Accili, Jeffrey R. Schelling

×

Open-label phase 4 trial evaluating nusinersen after onasemnogene abeparvovec in children with spinal muscular atrophy
BACKGROUND. Spinal muscular atrophy (SMA) is a rare genetic neuromuscular disease caused by deletions or mutations of the survival motor neuron 1 gene. Despite the availability of genetically-based...
Published September 16, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI193956.
View: Text | PDF
Clinical Research and Public Health In-Press Preview Clinical Research Muscle biology

Open-label phase 4 trial evaluating nusinersen after onasemnogene abeparvovec in children with spinal muscular atrophy

  • Text
  • PDF
Abstract

BACKGROUND. Spinal muscular atrophy (SMA) is a rare genetic neuromuscular disease caused by deletions or mutations of the survival motor neuron 1 gene. Despite the availability of genetically-based treatments for SMA, functional impairments and weakness persist in treated symptomatic individuals. This study addresses whether additional treatment after gene transfer therapy could provide further clinical benefits. METHODS. Interim Day 302 findings are described from the phase 4 open-label RESPOND trial evaluating nusinersen in participants aged ≤ 36 months who had suboptimal clinical status following onasemnogene abeparvovec (OA) treatment, as determined by the investigator. RESULTS. Thirty-seven participants included in the interim analysis were symptomatic at the time of OA administration. Most (92%) had two survival motor neuron 2 gene copies. Age at first nusinersen dose (median [range]) was 9.1 (3–33) months for participants with two SMN2 copies and 34.2 (31–36) months for those with three SMN2 copies, while time from OA dose to first nusinersen dose (median [range]) was 6.3 (3–31) and 13.3 (10–22) months, respectively. Participants had elevated neurofilament light chain (NfL) levels and low compound muscle action potential (CMAP) amplitudes at baseline, suggesting active neurodegeneration and severe denervation at study entry. Improvements from baseline were observed across a range of outcomes at Day 302, including motor function outcomes (HINE-2 and CHOP-INTEND total score), achievement of independent sitting, NfL levels, CMAP, and investigator- and caregiver-reported outcomes. Mean NfL levels decreased rapidly from baseline to Day 183 and remained low at Day 302. Mean ulnar and peroneal CMAP amplitudes increased. No safety concerns were identified. CONCLUSION. Improvements in clinical and biomarker outcomes support the benefit of nusinersen treatment in infants and children with suboptimal clinical status following OA. TRIAL REGISTRATION. ClinicalTrials.gov ID, NCT04488133; EudraCT number, 2020-003492-18. FUNDING. This study was sponsored by Biogen (Cambridge, MA, USA).

Authors

Crystal M. Proud, Richard S. Finkel, Julie A. Parsons, Riccardo Masson, John F. Brandsema, Nancy L. Kuntz, Richard Foster, Wenjing Li, Ross Littauer, Jihee Sohn, Stephanie Fradette, Bora Youn, Angela D. Paradis

×

A liver-infiltrating CD4+ Tfh1 cell response predicts HCV control, hepatitis, and seroconversion during acute infection
Sustained CD4+ T cell immunity is required for resolution of acute hepatitis C virus (HCV) infection but the response remains poorly characterized. Here, circulating CD4+ T cells with high PD-1 and...
Published September 16, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI178089.
View: Text | PDF
Research In-Press Preview Hepatology Immunology

A liver-infiltrating CD4+ Tfh1 cell response predicts HCV control, hepatitis, and seroconversion during acute infection

  • Text
  • PDF
Abstract

Sustained CD4+ T cell immunity is required for resolution of acute hepatitis C virus (HCV) infection but the response remains poorly characterized. Here, circulating CD4+ T cells with high PD-1 and ICOS co-expression were temporally associated with onset of virus control, seroconversion, and hepatitis in HCV-infected chimpanzees. Co-production of Tfh (IL-21, CXCL13) and Th1 (IFN-γ, TNF) cytokines after stimulation with HCV non-structural proteins demonstrated that the response was predominately Tfh1-like and virus-specific. Transcriptional analysis confirmed a Tfh1 lineage assignment. Effector-related genes such as ADGRG1 (GPR56), ZNF683 (Hobit), and KLRB1 (CD161) were also expressed. HCV-specific PD-1hiICOShi CD4+ Tfh1-like cells were enriched in liver, suggesting the potential for B and CD8+ T cell help at the site of virus replication. Most circulating and intrahepatic PD-1hiICOShi CD4+ Tfh1-like cells did not express CXCR5, and therefore resembled CXCR5-negative CXCL13-positive peripheral helper (Tph) cells that infiltrate tumors and tissues inflamed by autoimmunity. PD-1hiICOShi CD4+ cells also peaked after hepatitis A virus infection, but the response was accelerated by several weeks when compared with HCV infection. The PD-1hiICOShi phenotype, and temporal association between the peak response and ALT, may provide markers to guide human studies of CD4+ T cell immunity against HCV and other hepatotropic viruses.

Authors

Heather Blasczyk, William G. Bremer, Christopher C. Phelps, Yan Zhou, David G. Bowen, Zhaohui Xu, Robert E. Lanford, Naglaa H. Shoukry, Arash Grakoui, Nicole E. Skinner, Christopher M. Walker

×

Multiomic assessments of LNCaP and derived cell strains reveal determinants of prostate cancer pathobiology
A cornerstone of research to improve cancer outcomes involves studies of model systems to identify causal drivers of oncogenesis, understand mechanisms leading to metastases, and develop new...
Published September 16, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI194727.
View: Text | PDF
Research In-Press Preview Cell biology Oncology

Multiomic assessments of LNCaP and derived cell strains reveal determinants of prostate cancer pathobiology

  • Text
  • PDF
Abstract

A cornerstone of research to improve cancer outcomes involves studies of model systems to identify causal drivers of oncogenesis, understand mechanisms leading to metastases, and develop new therapeutics. While most cancer types are represented by large cell line panels that reflect diverse neoplastic genotypes and phenotypes found in patients, prostate cancer is notable for a very limited repertoire of models that recapitulate the pathobiology of human disease. Of these, Lymph node carcinoma of the prostate (LNCaP) has served as the major resource for basic and translational studies. Here, we delineated the molecular composition of LNCaP and multiple substrains through analyses of whole genome sequences, transcriptomes, chromatin structure, AR cistromes, and functional studies. Our results determined that LNCaP exhibits substantial subclonal diversity, ongoing genomic instability and phenotype plasticity. While several oncogenic features were consistently present across strains, others were unexpectedly variable such as ETV1 expression, Y chromosome loss, a reliance on WNT and glucocorticoid receptor activity, and distinct AR alterations maintaining AR pathway activation. These results document the inherent molecular heterogeneity and ongoing genomic instability that drive diverse prostate cancer phenotypes and provide a foundation for the accurate interpretation and reproduction of research findings.

Authors

Arnab Bose, Armand Bankhead III, Ilsa Coleman, Thomas Persse, Wanting Han, Patricia Galipeau, Brian Hanratty, Tony Chu, Jared Lucas, Dapei Li, Rabeya Bilkis, Pushpa Itagi, Sajida Hassan, Mallory Beightol, Minjeong Ko, Ruth Dumpit, Michael Haffner, Colin Pritchard, Gavin Ha, Peter S. Nelson

×

TIE2 activation by antibody-clustered endogenous angiopoietin-2 prevents capillary loss and fibrosis in experimental kidney disease
The role of endothelial dysfunction in tubulointerstitial fibrosis associated with chronic kidney disease (CKD) is not well understood. In this study, we demonstrate that the activation of the...
Published September 15, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI190286.
View: Text | PDF
Research In-Press Preview Nephrology Vascular biology

TIE2 activation by antibody-clustered endogenous angiopoietin-2 prevents capillary loss and fibrosis in experimental kidney disease

  • Text
  • PDF
Abstract

The role of endothelial dysfunction in tubulointerstitial fibrosis associated with chronic kidney disease (CKD) is not well understood. In this study, we demonstrate that the activation of the endothelial tyrosine kinase TIE2 alleviates renal pathology in experimental CKD in mice. TIE2 activation was achieved using a human angiopoietin-2 (ANGPT2)-binding and TIE2-activating antibody (ABTAA), or through adult-induced endothelial-specific knockout of the vascular endothelial protein tyrosine phosphatase gene (Veptp). Both methods significantly protected CKD mice from endothelial dysfunction, peritubular capillary loss, tubular epithelial injury, and tubulointerstitial fibrosis. Conversely, silencing TIE2 through adult-induced endothelial-specific knockout of the Tie2 gene exacerbated CKD pathology. Additionally, we found that endothelial dysfunction promotes renal fibrosis not through endothelial-to-mesenchymal transition as previously expected, but by inducing the expression of pro-fibrotic PDGFB in tubular epithelial cells, a process that is inhibited by TIE2 activation. Our findings suggest that TIE2 activation via ABTAA warrants investigation as a therapy in human CKD, where there is a substantial unmet medical need.

Authors

Riikka Pietilä, Amanda M. Marks-Hultström, Liqun He, Sami Nanavazadeh, Susan E. Quaggin, Christer Betsholtz, Marie Jeansson

×

Molnupiravir clinical trial simulation suggests that polymerase chain reaction underestimates antiviral potency against SARS-CoV-2
Molnupiravir is an antiviral medicine that induces lethal copying errors during SARS-CoV-2 RNA replication. Molnupiravir reduced hospitalization in one pivotal trial by 50% and had variable effects...
Published September 11, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI192052.
View: Text | PDF
Research In-Press Preview Immunology Infectious disease Virology

Molnupiravir clinical trial simulation suggests that polymerase chain reaction underestimates antiviral potency against SARS-CoV-2

  • Text
  • PDF
Abstract

Molnupiravir is an antiviral medicine that induces lethal copying errors during SARS-CoV-2 RNA replication. Molnupiravir reduced hospitalization in one pivotal trial by 50% and had variable effects on reducing viral RNA levels in three separate trials. We used mathematical models to simulate these trials and closely recapitulated their virologic outcomes. Model simulations suggest lower antiviral potency against pre-omicron SARS-CoV-2 variants than against omicron. We estimate that in vitro assays underestimate in vivo potency 6-7 fold against omicron variants. Our model suggests that because polymerase chain reaction detects molnupiravir mutated variants, the true reduction in non-mutated viral RNA is underestimated by ~0.4 log10 in the two trials conducted while omicron variants dominated. Viral area under the curve estimates differ significantly between non-mutated and mutated viral RNA. Our results reinforce past work suggesting that in vitro assays are unreliable for estimating in vivo antiviral drug potency and suggest that virologic endpoints for respiratory virus clinical trials should be catered to the drug mechanism of action.

Authors

Shadisadat Esmaeili, Katherine Owens, Ugo Avila-Ponce de Leon, Joseph F. Standing, David M. Lowe, Shengyuan Zhang, James A. Watson, William H.K. Schilling, Jessica Wagoner, Stephen J. Polyak, Joshua T. Schiffer

×

Targeting peroxiredoxin 2 prevents hepatocarcinogenesis in metabolic liver disease
Treatment options for advanced liver disease and hepatocellular carcinoma (HCC) are limited and strategies to prevent HCC development are lacking. Aiming to discover novel therapeutic targets, we...
Published September 11, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI169395.
View: Text | PDF
Research In-Press Preview Hepatology Oncology

Targeting peroxiredoxin 2 prevents hepatocarcinogenesis in metabolic liver disease

  • Text
  • PDF
Abstract

Treatment options for advanced liver disease and hepatocellular carcinoma (HCC) are limited and strategies to prevent HCC development are lacking. Aiming to discover novel therapeutic targets, we combined genome wide transcriptomic analysis of liver tissues from patients with advanced liver disease and HCC and a cell-based system predicting liver disease progression and HCC risk. Computational analysis predicted peroxiredoxin 2 (PRDX2) as a candidate gene mediating hepatocarcinogenesis and HCC risk. Analysis of HCC patient tissues confirmed a perturbed expression of PRDX2 in cancer. In vivo perturbation studies in mouse models for MASH driven hepatocarcinogenesis showed that specific Prdx2 knockout in hepatocytes significantly improved metabolic liver functions, restored AMPK activity and prevented HCC development by suppressing oncogenic signaling. Perturbations studies in HCC cell lines, a CDX mouse model and patient-derived HCC spheroids unraveled that PRDX2 also mediates cancer initiation, cancer cell proliferation and survival through its antioxidant activity. Targeting PRDX2 may therefore be a valuable strategy to prevent HCC development in metabolic liver disease.

Authors

Emilie Crouchet, Eugénie Schaeffer, Marine A. Oudot, Julien Moehlin, Cloé Gadenne, Frank Jühling, Hussein El Saghire, Naoto Fujiwara, Shijia Zhu, Fahmida Akter Rasha, Sarah C. Durand, Anouk Charlot, Clara Ponsolles, Romain Martin, Nicolas Brignon, Fabio Del Zompo, Laura Meiss Heydmann, Marie Parnot, Nourdine Hamdane, Danijela Heide, Jenny Hetzer, Mathias Heikenwälder, Emanuele Felli, Patrick Pessaux, Nathalie Pochet, Joffrey Zoll, Brian Cunniff, Yujin Hoshida, Laurent Mailly, Thomas F. Baumert, Catherine Schuster

×

Statin-dependent and -independent pathways are associated with major adverse cardiovascular events in people with HIV
Background. Statin therapy lowers the risk of major adverse cardiovascular events (MACE) among people with HIV (PWH). Residual risk pathways contributing to excess MACE beyond low-density...
Published September 9, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI196021.
View: Text | PDF
Clinical Research and Public Health In-Press Preview AIDS/HIV Cardiology Inflammation

Statin-dependent and -independent pathways are associated with major adverse cardiovascular events in people with HIV

  • Text
  • PDF
Abstract

Background. Statin therapy lowers the risk of major adverse cardiovascular events (MACE) among people with HIV (PWH). Residual risk pathways contributing to excess MACE beyond low-density lipoprotein cholesterol (LDL-C) are not well understood. Our objective was to evaluate the association of statin responsive and other inflammatory and metabolic pathways to MACE in the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE). Methods. Cox proportional hazards models were used to assess the relationship between MACE and proteomic measurements at study entry and year 2 adjusting for time-updated statin use and baseline 10-year atherosclerotic cardiovascular disease risk score. We built a machine learning (ML) model to predict MACE using baseline proteins values with significant associations. Results. In 765 individuals (age: 50.8±5.9 years, 82% males) among 7 proteins changing with statin vs. placebo, angiopoietin-related protein 3 (ANGPTL3) related most strongly to MACE (aHR: 2.31 per 2-fold higher levels; 95%CI: 1.11-4.80; p=0.03), such that lower levels of ANGPTL3 achieved with statin therapy were associated with lower MACE risk. Among 248 proteins not changing in response to statin therapy, 26 were associated with MACE at FDR<0.05. These proteins represented predominantly humoral immune response, leukocyte chemotaxis, and cytokine pathways. Our proteomic ML model achieved a 10-fold cross-validated c-index of 0.74±0.11 to predict MACE, improving on models using traditional risk prediction scores only (c-index: 0.61±0.18). Conclusions. ANGPTL3, as well as key inflammatory pathways may contribute to residual risk of MACE among PWH, beyond LDL-C. Trial registration. ClinicalTrials.gov: NCT02344290. Funding. NIH, Kowa, Gilead Sciences, ViiV.

Authors

Márton Kolossváry, Irini Sereti, Markella V. Zanni, Carl J. Fichtenbaum, Judith A Aberg, Gerald S. Bloomfield, Carlos D. Malvestutto, Judith S. Currier, Sarah M. Chu, Marissa R. Diggs, Alex B. Lu, Christopher deFilippi, Borek Foldyna, Sara McCallum, Craig A. Sponseller, Michael T. Lu, Pamela S. Douglas, Heather J. Ribaudo, Steven K. Grinspoon

×

ZEB1 promotes chemo-immune resistance in pancreatic cancer models by downregulating chromatin acetylation of CXCL16
Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression,...
Published September 9, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI195970.
View: Text | PDF
Research In-Press Preview Cell biology Oncology

ZEB1 promotes chemo-immune resistance in pancreatic cancer models by downregulating chromatin acetylation of CXCL16

  • Text
  • PDF
Abstract

Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC. ZEB1 knockdown synergized with gemcitabine and anti-PD1 therapy, markedly suppressed PC growth, and prolonged survival in vivo. Single-cell and spatial transcriptomics revealed that ZEB1 ablation promoted tumor pyroptosis by recruiting and activating GZMA+CD8+ T cells in the tumor core through epigenetic upregulation of CXCL16. Meanwhile, ZEB1 blockade attenuates CD44+ neutrophil-induced CD8+ T cell exhaustion by reducing tumor-derived SPP1 secretion, which otherwise promotes exhaustion through activation of the PD-L1–PD-1 pathway. Clinically, high ZEB1 expression correlated with chemoresistance, immunosuppression, and diminished CXCL16 levels in PC patients. Importantly, the epigenetic inhibitor Mocetinostat (targeting ZEB1) potentiated chemoimmunotherapy efficacy, including anti-PD1 and CAR-T therapies, in patient-derived organoids, xenografts, and orthotopic models. Our study unveils ZEB1 as a master epigenetic regulator of chemoimmunotherapy resistance and proposes its targeting as a transformative strategy for PC treatment.

Authors

Shaobo Zhang, Yumeng Hu, Zhijun Zhou, Gaoyuan Lv, Chenze Zhang, Yuanyuan Guo, Fangxia Wang, Yuxin Ye, Haoran Qi, Hui Zhang, Wenming Wu, Min Li, Mingyang Liu

×

TFIIH-p52∆C defines a ninth xeroderma pigmentosum complementation-group XP-J and restores TFIIH stability to p8-defective trichothiodystrophy
Few drugs are available for rare diseases due to economic disincentives. However, tailored medications for extremely-rare disorders (N-of-1) offer a ray of hope. Artificial antisense...
Published September 9, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI195732.
View: Text | PDF
Research In-Press Preview Cell biology Dermatology Genetics

TFIIH-p52∆C defines a ninth xeroderma pigmentosum complementation-group XP-J and restores TFIIH stability to p8-defective trichothiodystrophy

  • Text
  • PDF
Abstract

Few drugs are available for rare diseases due to economic disincentives. However, tailored medications for extremely-rare disorders (N-of-1) offer a ray of hope. Artificial antisense oligonucleotides (ASOs) are now best known for their use in spinal muscular atrophy (SMA). The success of nusinersen/Spinraza for SMA indicates ASO-therapies' potential for other rare conditions. We propose a strategy to develop N-of-1 ASOs for treating one form of trichothiodystrophy (TTD), a rare condition with multisystem abnormalities and reduced life expectancy, associated with instability and greatly reduced amounts of the DNA-repair/transcription factor TFIIH. The therapeutic target carry mutations in GTF2H5, encoding the TFIIH-p8 subunit. This approach was inspired by the diagnosis and molecular dissection of a xeroderma pigmentosum (XP) case with mutations in GTF2H4, encoding the TFIIH-p52 subunit. This is newly classified as a ninth XP complementation-group, XP-J, identified five decades after the discovery of the other XP complementation-groups. The p8-p52 interaction is required to support the TFIIH-complex formation, and the patient's p52 C-terminal truncation results in the complete absence of p8 in TFIIH. However, intriguingly, TFIIH remained stable in vivo, and the XP-J patient did not exhibit any TTD-features. The aim of our ASO-design is to induce a C-terminal truncation of p52 and we have successfully stabilised TFIIH in p8-deficient TTD-A patient cells.

Authors

Yuka Nakazawa, Lin Ye, Yasuyoshi Oka, Hironobu Morinaga, Kana Kato, Mayuko Shimada, Kotaro Tsukada, Koyo Tsujikawa, Yosuke Nishio, Hiva Fassihi, Shehla Mohammed, Alan R. Lehmann, Tomoo Ogi

×

XP-J, a ninth xeroderma pigmentosum complementation group, results from mutations in GTF2H4, encoding TFIIH-p52 subunit
Published September 9, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI195731.
View: Text | PDF
Research Letter In-Press Preview Dermatology Genetics

XP-J, a ninth xeroderma pigmentosum complementation group, results from mutations in GTF2H4, encoding TFIIH-p52 subunit

  • Text
  • PDF
Abstract

Authors

Hiva Fassihi, Shehla Mohammed, Yuka Nakazawa, Heather Fawcett, Sally Turner, Joanne Palfrey, Isabel Garrood, Adesoji Abiona, Ana M.S. Morley, Mayuko Shimada, Kana Kato, Alan R. Lehmann, Tomoo Ogi

×

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome
Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome...
Published September 9, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI195756.
View: Text | PDF
Research In-Press Preview Cell biology Endocrinology Genetics

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome

  • Text
  • PDF
Abstract

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking. We used genome sequencing to identify 6 individuals with MEDS caused by biallelic variants in the novel disease gene, TMEM167A. All had neonatal diabetes (diagnosed <6 months) and severe microcephaly, five also had epilepsy. TMEM167A is highly expressed in developing and adult human pancreas and brain. To gain insights into the mechanisms leading to diabetes, we silenced TMEM167A in EndoC-βH1 cells and knocked-in one patient’s variant, p.Val59Glu, in induced pluripotent stem cells (iPSCs). Both TMEM167A depletion in EndoC-βH1 cells and the p.Val59Glu variant in iPSC-derived β cells sensitized β cells to ER stress. The p.Val59Glu variant impaired proinsulin trafficking to the Golgi and induced iPSC-β cell dysfunction. The discovery of TMEM167A variants as a new genetic cause of MEDS highlights a critical role of TMEM167A in the ER to Golgi pathway in β cells and neurons.

Authors

Enrico Virgilio, Sylvia Tielens, Georgia Bonfield, Fang-Shin Nian, Toshiaki Sawatani, Chiara Vinci, Molly Govier, Hossam Montaser, Romane Lartigue, Anoop Arunagiri, Alexandrine Liboz, Flavia Natividade da Silva, Maria Lytrivi, Theodora Papadopoulou, Matthew N. Wakeling, James Russ-Silsby, Pamela Bowman, Matthew B. Johnson, Thomas W. Laver, Anthony Piron, Xiaoyan Yi, Federica Fantuzzi, Sirine Hendrickx, Mariana Igoillo-Esteve, Bruno J. Santacreu, Jananie Suntharesan, Radha Ghildiyal, Darshan G. Hegde, Nikhil Avnish Shah, Sezer Acar, Beyhan Özkaya Dönmez, Behzat Özkan, Fauzia Mohsin, Iman M. Talaat, Mohamed Tarek Abbas, Omar Saied Abbas, Hamed Ali Alghamdi, Nurgun Kandemir, Sarah E. Flanagan, Raphael Scharfmann, Peter Arvan, Matthieu Raoux, Laurent Nguyen, Andrew T. Hattersley, Miriam Cnop, Elisa De Franco

×

A multi-omics recovery factor predicts long COVID in the IMPACC study
Background. Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic...
Published September 9, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI193698.
View: Text | PDF
Clinical Research and Public Health In-Press Preview Immunology Infectious disease

A multi-omics recovery factor predicts long COVID in the IMPACC study

  • Text
  • PDF
Abstract

Background. Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities. Methods. We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics “recovery factor”, trained on patient-reported physical function survey scores. Immune profiling data included PBMC transcriptomics, serum O-link and plasma proteomics, plasma metabolomics, and blood CyTOF protein levels. Recovery factor scores were tested for association with LC, disease severity, clinical parameters, and immune subset frequencies. Enrichment analyses identified biologic pathways associated with recovery factor scores. Results. LC participants had lower recovery factor scores compared to recovered participants. Recovery factor scores predicted LC as early as hospital admission, irrespective of acute COVID-19 severity. Biologic characterization revealed increased inflammatory mediators, elevated signatures of heme metabolism, and decreased androgenic steroids as predictive and ongoing biomarkers of LC. Lower recovery factor scores were associated with reduced lymphocyte and increased myeloid cell frequencies. The observed signatures are consistent with persistent inflammation driving anemia and stress erythropoiesis as major biologic underpinnings of LC. Conclusion. The multi-omics recovery factor identifies patients at risk of LC early after SARS-CoV-2 infection and reveals LC biomarkers and potential treatment targets. Trial Registration. ClinicalTrials.gov NCT04378777. Funding. This study was funded by NIH, NIAID and NSF.

Authors

Gisela Gabernet, Jessica Maciuch, Jeremy P. Gygi, John F. Moore, Annmarie Hoch, Caitlin Syphurs, Tianyi Chu, Naresh Doni Jayavelu, David B. Corry, Farrah Kheradmand, Lindsey R. Baden, Rafick-Pierre Sekaly, Grace A. McComsey, Elias K. Haddad, Charles B. Cairns, Nadine Rouphael, Ana Fernandez-Sesma, Viviana Simon, Jordan P. Metcalf, Nelson I. Agudelo Higuita, Catherine L. Hough, William B. Messer, Mark M. Davis, Kari C. Nadeau, Bali Pulendran, Monica Kraft, Chris Bime, Elaine F. Reed, Joanna Schaenman, David J. Erle, Carolyn S. Calfee, Mark A. Atkinson, Scott C. Brakenridge, Esther Melamed, Albert C. Shaw, David A. Hafler, Alison D. Augustine, Patrice M. Becker, Al Ozonoff, Steven E. Bosinger, Walter Eckalbar, Holden T. Maecker, Seunghee Kim-Schulze, Hanno Steen, Florian Krammer, Kerstin Westendorf, IMPACC Network, Bjoern Peters, Slim Fourati, Matthew C. Altman, Ofer Levy, Kinga K. Smolen, Ruth R. Montgomery, Joann Diray-Arce, Steven H. Kleinstein, Leying Guan, Lauren I.R. Ehrlich

×

Multi-omic analysis reveals a key BCAT1 role in mTOR activation by B-cell receptor and TLR9
B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to...
Published September 9, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI186258.
View: Text | PDF
Research In-Press Preview Cell biology Metabolism

Multi-omic analysis reveals a key BCAT1 role in mTOR activation by B-cell receptor and TLR9

  • Text
  • PDF
Abstract

B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof. T-independent BCR/TLR9 co-stimulation, which drives malignant and autoimmune B-cell states highly induced the transaminase branched chain amino acid transaminase 1 (BCAT1), which localized to lysosomal membranes to support branched chain amino acid synthesis and mechanistic target of rapamycin complex 1 (mTORC1) activation. BCAT1 inhibition blunted BCR/TLR9, but not CD40L/IL4-triggered B-cell proliferation, IL10 expression and BCR/TLR pathway-driven lymphoma xenograft outgrowth. These results provide a valuable resource, reveal receptor-mediated immunometabolism remodeling to support key B-cell phenotypes and identify BCAT1 as an activated B-cell therapeutic target.

Authors

Rui Guo, Yizhe Sun, Matthew Y. Lim, Hardik Shah, Joao A. Paulo, Rahaman A. Ahmed, Weixing Li, Yuchen Zhang, Haopeng Yang, Liang Wei Wang, Daniel Strebinger, Nicholas A. Smith, Meng Li, Merrin Man Long Leong, Michael Lutchenkov, Jin-Hua Liang, Zhixuan Li, Yin Wang, Rishi Puri, Ari Melnick, Michael R. Green, John M. Asara, Adonia E. Papathanassiu, Duane R. Wesemann, Steven P. Gygi, Vamsi K. Mootha, Benjamin E. Gewurz

×

Immune cell quantification of in situ inflammation partitions human lupus nephritis into mechanistic subtypes
BACKGROUND. In human lupus nephritis (LuN), tubulointerstitial inflammation (TII) is prognostically more important than glomerular inflammation. However, a comprehensive understanding of both TII...
Published September 4, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI192669.
View: Text | PDF
Clinical Research and Public Health In-Press Preview Autoimmunity Immunology

Immune cell quantification of in situ inflammation partitions human lupus nephritis into mechanistic subtypes

  • Text
  • PDF
Abstract

BACKGROUND. In human lupus nephritis (LuN), tubulointerstitial inflammation (TII) is prognostically more important than glomerular inflammation. However, a comprehensive understanding of both TII complexity and heterogeneity is lacking. METHODS. Herein, we used high-dimensional confocal microscopy, spatial transcriptomics and specialized computer vision techniques to quantify immune cell populations and localize these within normal and diseased renal cortex structures. With these tools, we compared LuN to renal allograft rejection (RAR) and normal kidney on 54 de-identified biopsies. RESULTS. In both LuN and RAR, the 33 characterized immune cell populations formed discrete subgroups whose constituents co-varied in prevalence across biopsies. In both diseases, these co-variant immune cell subgroups organized into the same unique niches. Therefore, inflammation could be resolved into trajectories representing the relative prevalence and density of cardinal immune cell members of each co-variant subgroup. Indeed, in any one biopsy, the inflammatory state could be characterized by quantifying constituent immune cell trajectories. Remarkably, LuN heterogeneity could be captured by quantifying a few myeloid immune cell trajectories while RAR was more complex with additional T cell trajectories. CONCLUSIONS. Our studies identify rules governing renal inflammation and thus provide an approach for resolving LuN into discrete mechanistic categories. FUNDING. NIH (U19 AI 082724 [MRC], R01 AI148705 [MRC and ASC]), Chan Zuckerberg Biohub (MRC) and Lupus Research Alliance (MRC)

Authors

Gabriel Casella, Madeleine S. Torcasso, Junting Ai, Thao P. Cao, Satoshi Hara, Michael S. Andrade, Deepjyoti Ghosh, Daming Shao, Anthony Chang, Kichul Ko, Anita S. Chong, Maryellen L. Giger, Marcus R. Clark

×

UBA1-depleted neutrophils disrupt immune homeostasis and induce VEXAS-like autoinflammatory disease in mice
VEXAS (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) syndrome is a haemato-rheumatoid disease caused by somatic UBA1 mutations in hematopoietic stem cells (HSCs). The pathogenic cell...
Published September 4, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI193011.
View: Text | PDF
Research In-Press Preview Hematology Inflammation

UBA1-depleted neutrophils disrupt immune homeostasis and induce VEXAS-like autoinflammatory disease in mice

  • Text
  • PDF
Abstract

VEXAS (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) syndrome is a haemato-rheumatoid disease caused by somatic UBA1 mutations in hematopoietic stem cells (HSCs). The pathogenic cell type(s) responsible for the syndrome are unknown and murine models recapitulating the disease are lacking. We report that loss of Uba1 in various mouse hematopoietic cell types resulted in pleiotropic consequences and demonstrate that murine mutants with about 70% loss of Uba1 in neutrophils induced non-lethal VEXAS-like symptoms. Depletion of Uba1 in HSCs induced extensive hematopoietic cell loss while depletion of Uba1 in B or T cells, or in megakaryocytes induced corresponsive cell death but these mutants appeared normal. Depletion of Uba1 in monocytes and neutrophils failed to induce cell death and the mutants were viable. Among the tested models, only depletion of Uba1 in neutrophils induced autoinflammatory symptoms including increased counts and percentage of neutrophils, increased proinflammatory cytokines, occurrence of vacuoles in myeloid cells, splenomegaly and dermatitis. Residual Uba1 was about 30% in the mutant neutrophils, which disrupted cellular hemostasis. Finally, genetic loss of the myeloid pro-survival regulator Morrbid partially mitigated the VEXAS-like symptoms. The established VEXAS-like murine model will assist understanding and treatment of the newly identified autoinflammatory syndrome prevalent among aged men.

Authors

Ge Dong, Jingjing Liu, Wenyan Jin, Hongxi Zhou, Yuchen Wen, Zhiqin Wang, Keyao Xia, Jianlin Zhang, Linxiang Ma, Yunxi Ma, Lorie Chen Cai, Qiufan Zhou, Huaquan Wang, Wei Wei, Ying Fu, Zhigang Cai

×

Localized high-risk prostate cancer harbors an androgen receptor activity-low subpopulation susceptible to HER2 inhibition
BACKGROUND. Localized high-risk prostate cancer (PCa) often recurs despite neoadjuvant androgen deprivation therapy (ADT). We sought to identify baseline molecular programs that predict pathologic...
Published September 4, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI189900.
View: Text | PDF
Clinical Research and Public Health In-Press Preview Genetics Oncology

Localized high-risk prostate cancer harbors an androgen receptor activity-low subpopulation susceptible to HER2 inhibition

  • Text
  • PDF
Abstract

BACKGROUND. Localized high-risk prostate cancer (PCa) often recurs despite neoadjuvant androgen deprivation therapy (ADT). We sought to identify baseline molecular programs that predict pathologic response and reveal targetable vulnerabilities. METHODS. We profiled 147 biopsy foci from 48 MRI-visible lesions in 37 patients before 6 months of ADT plus enzalutamide and radical prostatectomy. Residual cancer burden (RCB) at prostatectomy was the primary outcome. Analyses incorporated PTEN loss, TMPRSS2:ERG status, and HER2/androgen receptor (AR) immunohistochemistry on baseline and posttreatment tissues. Findings were evaluated in an external transcriptional cohort (n = 121) and by multiplex immunostaining in an independent cohort (n = 61). Functional assays tested enzalutamide-responsive enhancers near ERBB2 and sensitivity to HER2 inhibition. RESULTS. A baseline HER2-associated transcriptional program correlated with higher RCB and inversely with AR activity, independent of PTEN and ERG. Exceptional responders had lower HER2 protein in pretreatment biopsies. The inverse AR-HER2 relationship recurred across datasets and multiplex immunostaining, which revealed coexisting AR-high/HER2-low and HER2-high/AR-low subpopulations. Enzalutamide inhibited AR-mediated repression of ERBB2. HER2-high, AR-low cells present before therapy resisted ADT yet were sensitive to HER2 inhibitors; combining HER2 inhibitors with enzalutamide increased tumor cell killing. These findings were reproduced in the external cohort and orthogonal assays. CONCLUSION. Baseline HER2 activity marks intrinsic resistance to neoadjuvant ADT in localized high-risk PCa and identifies a preexisting, targetable AR-low subpopulation. HER2-directed therapy, alone or with AR blockade, warrants clinical evaluation. TRIAL REGISTRATION. ClinicalTrials.gov registration: NCT02430480. FUNDING. Prostate Cancer Foundation; Department of Defense Prostate Cancer Research Program; National Institutes of Health.

Authors

Scott Wilkinson, Anson T. Ku, Rosina T. Lis, Isaiah M. King, Daniel Low, Shana Y. Trostel, John R. Bright, Nicholas T. Terrigino, Anna Baj, Emily R. Summerbell, Kayla E. Heyward, Sumeyra Kartal, John M. Fenimore, Chennan Li, Cassandra Singler, BaoHan Vo, Caroline S. Jansen, Huihui Ye, Nichelle C. Whitlock, Stephanie A. Harmon, Nicole V. Carrabba, Rayann Atway, Ross Lake, David Y. Takeda, Haydn T. Kissick, Peter A. Pinto, Peter L. Choyke, Baris Turkbey, William L. Dahut, Fatima Karzai, Adam G. Sowalsky

×

← Previous 1 2 3 … 108 109 Next →


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts