Epidermal stem cells control homeostasis and regeneration of skin and hair. In the hair follicle (HF) bulge of mammals, populations of slow-cycling stem cells regenerate the HF during cyclical rounds of anagen (growth), telogen (quiescence), and catagen (regression). Multipotent epidermal cells are also present in the HF above the bulge area, contributing to the formation and maintenance of sebaceous gland and upper and middle portions of the HF. Here, we report that the transcription factor Krox20 is enriched in an epidermal stem cell population located in the upper/ middle HF. Expression analyses and lineage tracing using inducible Krox20-CreERT showed that Krox20-lineage cells migrate out of this HF region and contribute to the formation of bulge in the HF, serving as ancestors of bulge stem cells. In vivo depletion of these cells arrests HF morphogenesis. This study identifies a novel marker for an epidermal stem cell population that is indispensable for hair homeostasis.
Elnaz Ghotbi, Edem Tchegnon, Zhiguo Chen, Stephen Li, Tracey Shipman, Yong Wang, Jenny Raman, Yumeng Zhang, Renee M. McKay, Chung-Ping Liao, Lu Q. Le
The study of transcription factors that determine specialised neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are neurone-like electro-physiologically excitable cells that link the oxygen content of arterial blood to the neuronal control of breathing. In the adult, this oxygen chemosensitivity is exemplified by the Type I cells of the carotid body and recent work has revealed one isoform of the transcription factor HIF, HIF-2α, to have a non-redundant role in the development and function of that organ. Here we show that the activation of HIF-2α, including isolated overexpression alone, is sufficient to induce oxygen chemosensitivity in the otherwise unresponsive adult adrenal medulla. This phenotypic change in the adrenal medulla was associated with retention of extra-adrenal paraganglioma-like tissues that resemble the foetal organ of Zuckerkandl and also manifest oxygen chemosensitivity. Acquisition of chemosensitivity was associated with changes in the adrenal medullary expression of classes of genes that are ordinarily characteristic of the carotid body, including G-protein regulators and atypical subunits of mitochondrial cytochrome oxidase. Overall, the findings suggest that, at least in certain tissues, HIF-2α acts as a phenotypic driver for cells that display oxygen chemosensitivity, thus linking two major oxygen sensing systems.
Maria Prange-Barczynska, Holly A. Jones, Yoichiro Sugimoto, Xiaotong Cheng, Joanna D.C.C Lima, Indrika Ratnayaka, Gillian Douglas, Keith J. Buckler, Peter J. Ratcliffe, Thomas P. Keeley, Tammie Bishop
Reelin (RELN) is a secreted glycoprotein essential for cerebral cortex development. In humans, recessive RELN variants cause cortical and cerebellar malformations, while heterozygous variants were associated to epilepsy, autism and mild cortical abnormalities. However, their functional effects remain unknown. We identified inherited and de novo RELN missense variants in heterozygous patients with neuronal migration disorders (NMDs) as diverse as pachygyria and polymicrogyria. We investigated in culture and in the developing mouse cerebral cortex how different variants impacted RELN function. Polymicrogyria-associated variants behaved as gain-of-function showing an enhanced ability to induce neuronal aggregation, while those linked to pachygyria as loss-of-function leading to defective neuronal aggregation/migration. The pachygyria-associated de novo heterozygous RELN variants acted as dominant-negative by preventing wild-type RELN secretion in culture, animal models and patients, thereby causing dominant NMDs. We demonstrated how mutant RELN proteins in vitro and in vivo predict cortical malformation phenotypes, providing valuable insights into the pathogenesis of such disorders.
Martina Riva, Sofia Ferreira, Kotaro Hayashi, Yoann Saillour, Vera P. Medvedeva, Takao Honda, Kanehiro Hayashi, Claire Altersitz, Shahad Albadri, Marion Rosello, Julie Dang, Malo Serafini, Frédéric Causeret, Olivia J. Henry, Charles-Joris Roux, Céline Bellesme, Elena Freri, Dragana Josifova, Elena Parrini, Renzo Guerrini, Filippo Del Bene, Kazunori Nakajima, Nadia Bahi-Buisson, Alessandra Pierani
Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain–containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.
Jing Du, Pan Liu, Yalu Zhou, Sol Misener, Isha Sharma, Phoebe Leeaw, Benjamin R. Thomson, Jing Jin, Susan E. Quaggin
One of the features of pathological cardiac hypertrophy is enhanced translation and protein synthesis. Translational inhibition has been shown to be an effective means of treating cardiac hypertrophy, although system-wide side effects are common. Regulators of translation, such as cardiac-specific long non-coding RNAs (lncRNAs), could provide new, more targeted, therapeutic approaches to inhibit cardiac hypertrophy. Therefore, we generated mice lacking a previously identified lncRNA named CARDINAL to examine its cardiac function. We demonstrate that CARDINAL is a cardiac-specific, ribosome associated lncRNA and show that its expression is induced in the heart upon pathological cardiac hypertrophy; its deletion in mice exacerbates stress-induced cardiac hypertrophy and augments protein translation. In contrast, overexpression of CARDINAL attenuates cardiac hypertrophy in vivo and in vitro, and suppresses hypertrophy-induced protein translation. Mechanistically, CARDINAL interacts with developmentally regulated GTP binding protein 1 (DRG1) and blocks its interaction with DRG family regulatory protein 1 (DFRP1); as a result, DRG1 is downregulated, thereby modulating the rate of protein translation in the heart in response to stress. This study provides evidence for the therapeutic potential of targeting cardiac-specific lncRNAs to suppress disease-induced translational changes and to treat cardiac hypertrophy and heart failure.
Xin He, Tinqun Yang, Yao Wei Lu, Gengze Wu, Gang Dai, Qing Ma, Mingming Zhang, Huimin Zhou, Tianxin Long, Youchen Yan, Zhuomin Liang, Chen Liu, William T. Pu, Yugang Dong, Jingsong Ou, Hong Chen, John D. Mably, Jiangui He, Da-Zhi Wang, Zhan-Peng Huang
Epigenetic regulatory mechanisms are underappreciated, yet are critical for enteric nervous system (ENS) development and maintenance. We discovered that fetal loss of the epigenetic regulator Bap1 in the ENS lineage caused severe postnatal bowel dysfunction and early death in Tyrosinase-Cre Bap1fl/fl mice. Bap1-depleted ENS appeared normal in neonates; however, by P15, Bap1-deficient enteric neurons were largely absent from the small and large intestine of Tyrosinase-Cre Bap1fl/fl mice. Bowel motility became markedly abnormal with disproportionate loss of cholinergic neurons. Single-cell RNA sequencing at P5 showed that fetal Bap1 loss in Tyrosinase-Cre Bap1fl/fl mice markedly altered the composition and relative proportions of enteric neuron subtypes. In contrast, postnatal deletion of Bap1 did not cause enteric neuron loss or impaired bowel motility. These findings suggest that BAP1 is critical for postnatal enteric neuron differentiation and for early enteric neuron survival, a finding that may be relevant to the recently described human BAP1-associated neurodevelopmental disorder.
Sabine Schneider, Jessica B. Anderson, Rebecca P. Bradley, Katherine Beigel, Christina M. Wright, Beth A. Maguire, Guang Yan, Deanne M. Taylor, J. William Harbour, Robert O. Heuckeroth
While dysfunction and death of light-detecting photoreceptor cells underlie most inherited retinal dystrophies, knowledge of the species-specific details of human rod and cone photoreceptor cell development remains limited. Here, we generate retinal organoids carrying retinal disease-causing variants in NR2E3, as well as isogenic and unrelated controls. Organoids were sampled using single-cell RNA sequencing across the developmental window encompassing photoreceptor specification, emergence, and maturation. Using scRNAseq data, we reconstruct the rod photoreceptor developmental lineage and identify a branchpoint unique to the disease state. We show that the rod-specific transcription factor NR2E3 is required for the proper expression of genes involved in phototransduction, including rhodopsin, which is absent in divergent rods. NR2E3-null rods additionally misexpress several cone-specific phototransduction genes. Using joint multimodal single-cell sequencing, we further identify putative regulatory sites where rod-specific factors act to steer photoreceptor cell development. Finally, we show that rod-committed photoreceptor cells form and persist throughout life in a patient with NR2E3-associated disease. Importantly, these findings are strikingly different than those observed in Nr2e3 rodent models. Together, these data provide a roadmap of human photoreceptor development and leverage patient iPSCs to define the specific roles of rod transcription factors in photoreceptor cell emergence and maturation in health and disease.
Nathaniel K. Mullin, Laura R. Bohrer, Andrew P. Voigt, Lola P. Lozano, Allison T. Wright, Vera L. Bonilha, Robert F. Mullins, Edwin M. Stone, Budd A. Tucker
Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/–), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/– mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/– mice and partially reversed gene expression changes in Kat6b+/– cortical neurons. Both compounds improved sociability in Kat6b+/– mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.
Maria I. Bergamasco, Hannah K. Vanyai, Alexandra L. Garnham, Niall D. Geoghegan, Adam P. Vogel, Samantha Eccles, Kelly L. Rogers, Gordon K. Smyth, Marnie E. Blewitt, Anthony J. Hannan, Tim Thomas, Anne K. Voss
Craniofacial anomalies, especially midline facial defects, are among the most common birth defects in patients associated with increased mortality or require lifelong treatment. During mammalian embryogenesis, specific instructions arising at genetic, signaling, and metabolic levels are important for stem cell behaviors and fate determination, but how these functionally relevant mechanisms are coordinated to regulate craniofacial morphogenesis remain unknown. Here, we report that BMP signaling in cranial neural crest cells (CNCCs) is critical for glycolytic lactate production and subsequent epigenetic histone lactylation, thereby dictating craniofacial morphogenesis. Elevated BMP signaling in CNCCs through constitutively activated ACVR1 (ca-ACVR1) suppressed glycolytic activity and blocked lactate production via a p53-dependent process that resulted in severe midline facial defects. By modulating epigenetic remodeling, BMP signaling-dependent lactate generation drived histone lactylation levels to alter essential genes of Pdgfra thus regulating CNCC behavior in vitro as well as in vivo. These findings define an axis wherein the BMP signaling controls a metabolic-epigenetic cascade to direct craniofacial morphogenesis, thus providing a conceptual framework for understanding the interaction between genetic and metabolic cues operative during embryonic development. These findings indicate potential preventive strategies of congenital craniofacial birth defects via modulating metabolic-driven histone lactylation.
Jingwen Yang, Lingxin Zhu, Haichun Pan, Hiroki Ueharu, Masako Toda, Qian Yang, Shawn A. Hallett, Lorin E. Olson, Yuji Mishina
Aplasia cutis congenita (ACC) is a congenital epidermal defect of the midline scalp and has been proposed to be due to a primary keratinocyte abnormality. Why it forms mainly at this anatomic site has remained a longstanding enigma. KCTD1 mutations cause ACC, ectodermal abnormalities, and kidney fibrosis, whereas KCTD15 mutations cause ACC and cardiac outflow tract abnormalities. Here, we find that KCTD1 and KCTD15 can form multimeric complexes and can compensate for each other's loss, and that disease mutations are dominant-negative, resulting in lack of KCTD1/KCTD15 function. We demonstrate that KCTD15 is critical for cardiac outflow tract development, whereas KCTD1 regulates distal nephron function. Combined inactivation of KCTD1/KCTD15 in keratinocytes results in abnormal skin appendages, but not in ACC. Instead, KCTD1/KCTD15 inactivation in neural crest cells results in ACC linked to midline skull defects, demonstrating that ACC is not caused by a primary defect in keratinocytes but is a secondary consequence of impaired cranial neural crest cells giving rise to midline cranial suture cells that express keratinocyte-promoting growth factors. Our findings explain the clinical observations in patients with KCTD1 versus KCTD15 mutations, establish KCTD1/KCTD15 as critical regulators of ectodermal and neural crest cell functions, and define ACC as a neurocristopathy.
Jackelyn R. Raymundo, Hui Zhang, Giovanni Smaldone, Wenjuan Zhu, Kathleen E. Daly, Benjamin J. Glennon, Giovanni Pecoraro, Marco Salvatore, William A. Devine, Cecilia W. Lo, Luigi Vitagliano, Alexander G. Marneros
No posts were found with this tag.