Mechanisms that mediate allograft tolerance differ between organs. We have previously shown that Foxp3+ T cell-enriched bronchus-associated lymphoid tissue (BALT) is induced in tolerant murine lung allografts and that these Foxp3+ cells suppress alloimmune responses locally and systemically. Here, we demonstrated that Foxp3+ cells that reside in tolerant lung allografts differed phenotypically and transcriptionally from those in the periphery and were clonally expanded. Using a mouse lung re-transplant model, we showed that recipient Foxp3+ cells were continuously recruited to the BALT within tolerant allografts. We identified distinguishing features of graft-resident and newly recruited Foxp3+ cells and showed that graft-infiltrating Foxp3+ cells acquired transcriptional profiles resembling those of graft-resident Foxp3+ cells over time. Allografts underwent combined antibody-mediated rejection (AMR) and acute cellular rejection (ACR) when recruitment of recipient Foxp3+ cells was prevented. Finally, we showed that local administration of IL-33 could expand and activate allograft-resident Foxp3+ cells providing a platform for the design of tolerogenic therapies for lung transplant recipients. Our findings establish graft-resident Foxp3+ cells as critical orchestrators of lung transplant tolerance and highlight the need to develop lung-specific immunosuppression.
Wenjun Li, Yuriko Terada, Yun Zhu Bai, Yuhei Yokoyama, Hailey M. Shepherd, Junedh M. Amrute, Amit I. Bery, Zhiyi Liu, Jason M. Gauthier, Marina Terekhova, Ankit Bharat, Jon H. Ritter, Varun Puri, Ramsey R. Hachem, Hēth R. Turnquist, Peter T. Sage, Alessandro Alessandrini, Maxim N. Artyomov, Kory J. Lavine, Ruben G. Nava, Alexander S. Krupnick, Andrew E. Gelman, Daniel Kreisel
Tissue regenerative responses involve complex interactions between resident structural and immune cells. Recent reports indicate that accumulation of senescent cells during injury repair contributes to pathological tissue fibrosis. Using tissue-based spatial transcriptomics and proteomics, we identified upregulation of the immune checkpoint protein, cytotoxic T-lymphocyte associated protein 4 (CTLA4) on CD8+ T cells adjacent to regions of active fibrogenesis in human idiopathic pulmonary fibrosis (IPF) and in a murine model of repetitive bleomycin lung injury model of persistent fibrosis. In humanized CTLA4 knock-in mice, treatment with ipilimumab, an FDA-approved drug that targets CTLA4, resulted in accelerated lung epithelial regeneration and diminished fibrosis from repetitive bleomycin injury. Ipilimumab treatment resulted in the expansion of Cd3e+ T cells, diminished accumulation of senescent cells, and robust expansion of type 2 alveolar epithelial cells, facultative progenitor cells of the alveolar epithelium. Ex-vivo activation of isolated CTLA4-expressing CD8+ cells from mice with established fibrosis resulted in enhanced cytolysis of senescent cells, suggesting that impaired immune-mediated clearance of these cells contribute to persistence of lung fibrosis in this murine model. Our studies support the concept that endogenous immune surveillance of senescent cells may be essential in promoting tissue regenerative responses that facilitate the resolution of fibrosis.
Santosh Yadav, Muralidharan Anbalagan, Shamima Khatun, Devadharshini Prabhakaran, Justin Manges, Yasuka Matsunaga, James B. McLachlan, Joseph A. Lasky, Jay Kolls, Victor J. Thannickal
CD4+FOXP3+ regulatory T (Treg) cells maintain self-tolerance, suppress the immune response to cancer, and protect against tissue injury during acute inflammation. Treg cells require mitochondrial metabolism to function, but how Treg cells adapt their metabolic programs to optimize their function during an immune response occurring in a metabolically stressed microenvironment remains unclear. Here, we tested whether Treg cells require the energy homeostasis-maintaining enzyme AMPK to adapt to metabolically aberrant microenvironments caused by malignancy or lung injury, finding that AMPK is dispensable for Treg cell immune-homeostatic function but is necessary for full Treg cell function in B16 melanoma tumors and during influenza virus pneumonia. AMPK-deficient Treg cells had lower mitochondrial mass and exhibited an impaired ability to maximize aerobic respiration. Mechanistically, we found that AMPK regulates DNA methyltransferase 1 to promote transcriptional programs associated with mitochondrial function in the tumor microenvironment. During viral pneumonia, we found that AMPK sustains metabolic homeostasis and mitochondrial activity. Induction of DNA hypomethylation was sufficient to rescue mitochondrial mass in AMPK-deficient Treg cells, linking AMPK function to mitochondrial metabolism via DNA methylation. These results define AMPK as a determinant of Treg cell adaptation to metabolic stress and offer potential therapeutic targets in cancer and tissue injury.
Manuel A. Torres Acosta, Jonathan K. Gurkan, Qianli Liu, Nurbek Mambetsariev, Carla Reyes Flores, Kathryn A. Helmin, Anthony M. Joudi, Luisa Morales-Nebreda, Kathleen Cheng, Hiam Abdala-Valencia, Samuel E. Weinberg, Benjamin D. Singer
Rheumatoid arthritis (RA) is a systemic autoimmune disease currently with no universally highly effective prevention strategies. Identifying pathogenic immune phenotypes in at-risk populations prior to clinical onset is crucial to establishing effective prevention strategies. Here, we applied multimodal single-cell technologies (mass cytometry and CITE-Seq) to characterize the immunophenotypes in blood from at-risk individuals (ARIs) identified through the presence of serum antibodies against citrullinated protein antigens (ACPAs) and/or first-degree relative (FDR) status, as compared with patients with established RA and people in a healthy control group. We identified significant cell expansions in ARIs compared with controls, including CCR2+CD4+ T cells, T peripheral helper (Tph) cells, type 1 T helper cells, and CXCR5+CD8+ T cells. We also found that CD15+ classical monocytes were specifically expanded in ACPA-negative FDRs, and an activated PAX5lo naive B cell population was expanded in ACPA-positive FDRs. Further, we uncovered the molecular phenotype of the CCR2+CD4+ T cells, expressing high levels of Th17- and Th22-related signature transcripts including CCR6, IL23R, KLRB1, CD96, and IL22. Our integrated study provides a promising approach to identify targets to improve prevention strategy development for RA.
Jun Inamo, Joshua Keegan, Alec Griffith, Tusharkanti Ghosh, Alice Horisberger, Kaitlyn Howard, John F. Pulford, Ekaterina Murzin, Brandon Hancock, Salina T. Dominguez, Miranda G. Gurra, Siddarth Gurajala, Anna Helena Jonsson, Jennifer A. Seifert, Marie L. Feser, Jill M. Norris, Ye Cao, William Apruzzese, S. Louis Bridges, Vivian P. Bykerk, Susan Goodman, Laura T. Donlin, Gary S. Firestein, Joan M. Bathon, Laura B. Hughes, Andrew Filer, Costantino Pitzalis, Jennifer H. Anolik, Larry Moreland, Nir Hacohen, Joel M. Guthridge, Judith A. James, Carla M. Cuda, Harris Perlman, Michael B. Brenner, Soumya Raychaudhuri, Jeffrey A. Sparks, The Accelerating Medicines Partnership RA/SLE Network, V. Michael Holers, Kevin D. Deane, James Lederer, Deepak A. Rao, Fan Zhang
BACKGROUND Mucus plugs form in acute asthma and persist in chronic disease. Although eosinophils are implicated in mechanisms of mucus pathology, many mechanistic details about mucus plug formation and persistence in asthma are unknown.METHODS Using histology and spatial, single-cell proteomics, we characterized mucus-plugged airways from nontransplantable donor lungs of 14 patients with asthma (9 with fatal asthma and 5 with nonfatal asthma) and individuals acting as controls (10 with chronic obstructive pulmonary disease and 14 free of lung disease). Additionally, we used an airway epithelial cell–eosinophil (AEC-eosinophil) coculture model to explore how AEC mucus affects eosinophil degranulation.RESULTS Asthma mucus plugs were tethered to airways showing infiltration with innate lymphoid type 2 cells and hyperplasia of smooth muscle cells and MUC5AC-expressing goblet cells. Asthma mucus plugs were infiltrated with immune cells that were mostly dual positive for eosinophil peroxidase (EPX) and neutrophil elastase, suggesting that neutrophils internalize EPX from degranulating eosinophils. Indeed, eosinophils exposed to mucus from IL-13–activated AECs underwent CD11b- and glycan-dependent cytolytic degranulation. Dual-positive granulocytes varied in frequency in mucus plugs. Whereas paucigranulocytic plugs were MUC5AC rich, granulocytic plugs had a mix of MUC5AC, MUC5B, and extracellular DNA traps. Paucigranulocytic plugs occurred more frequently in (acute) fatal asthma and granulocytic plugs predominated in (chronic) nonfatal asthma.CONCLUSION Together, our data suggest that mucin-rich mucus plugs in fatal asthma form because of acute goblet cell degranulation in remodeled airways and that granulocytic mucus plugs in chronic asthma persist because of a sustaining niche characterized by epithelial cell–mucin-granulocyte cross-talk.FUNDING NIH grants HL080414, HL107202, and AI077439.
Maude A. Liegeois, Aileen Hsieh, May Al-Fouadi, Annabelle R. Charbit, Chen Xi Yang, Tillie-Louise Hackett, John V. Fahy
BACKGROUND Immune checkpoint blockade (ICB) is an effective treatment in a subset of patients diagnosed with head and neck squamous cell carcinoma (HNSCC); however, the majority of patients are refractory.METHODS In a nonrandomized, open-label Phase 1b clinical trial, participants with recurrent and/or metastatic (R/M) HNSCC were treated with low-dose 5-azacytidine (5-aza) daily for either 5 or 10 days in combination with durvalumab and tremelimumab after progression on ICB. The primary objective was to assess the biologically effective dose of 5-aza as determined by molecular changes in paired baseline and on-treatment tumor biopsies; the secondary objective was safety.RESULTS Thirty-eight percent (3 of 8) of participants with evaluable paired tissue samples had a greater-than 2-fold increase from baseline in IFN-γ signature and CD274 (programmed cell death protein 1 ligand, PD-L1) expression within the tumor microenvironment (TME), which was associated with increased CD8+ T cell infiltration and decreased infiltration of CD4+ T regulatory cells. The mean neutrophil-to-lymphocyte ratio (NLR) decreased by greater than 50%, from 14.2 (SD 22.6) to 6.9 (SD 5.2). Median overall survival (OS) was 16.3 months (95% CI 1.9, NA), 2-year OS rate was 24.7% (95% CI: 4.5%, 53.2%), and 58% (7 of 12) of treated participants demonstrated prolonged OS of greater than 12 months.CONCLUSION Our findings suggest that low-dose 5-aza can reprogram systemic host immune responses and the local TME to increase IFN-γ and PD-L1 expression. The increased expression of these established biomarkers correlated with prolonged OS upon ICB rechallenge.TRIAL REGISTRATION ClinicalTrials.gov NCT03019003.FUNDING NIH/NCI P01 CA240239.
Tingting Qin, Austin K. Mattox, Jean S. Campbell, Jong Chul Park, Kee-Young Shin, Shiting Li, Peter M. Sadow, William C. Faquin, Goran Micevic, Andrew J. Daniels, Robert Haddad, Christopher S. Garris, Mikael J. Pittet, Thorsten R. Mempel, Anne ONeill, Maureen A. Sartor, Sara I. Pai
Early antibody therapy can prevent severe SARS-CoV-2 infection (COVID-19). However, the effectiveness of COVID-19 convalescent plasma (CCP) therapy in treating severe COVID-19 remains inconclusive. To test a hypothesis that some CCP units are associated with a coagulopathy hazard in severe disease that offsets its benefits, we tracked 304 CCP units administered to 414 hospitalized COVID-19 patients to assess their association with the onset of unfavorable post-transfusion D-dimer trends. CCP recipients with increasing or persistently elevated D-dimer trajectories after transfusion experienced higher mortality than those whose D-dimer levels were persistently low or decreasing after transfusion. Within the CCP donor-recipient network, recipients with increasing or persistently high D-dimer trajectories were skewed toward association with a minority of CCP units. In in vitro assays, CCP from “higher-risk” units had higher cross-reactivity with the spike protein of human seasonal betacoronavirus OC43. “Higher-risk” CCP units also mediated greater Fcγ receptor IIa signaling against cells expressing SARS-CoV-2 spike compared with “lower-risk” units. This study finds that post-transfusion activation of coagulation pathways during severe COVID-19 is associated with specific CCP antibody profiles and supports a potential mechanism of immune complex–activated coagulopathy.
Svenja Weiss, Hung-Mo Lin, Eric Acosta, Natalia L. Komarova, Ping Chen, Dominik Wodarz, Ian Baine, Ralf Duerr, Ania Wajnberg, Adrian Gervais, Paul Bastard, Jean-Laurent Casanova, Suzanne A. Arinsburg, Talia H. Swartz, Judith A. Aberg, Nicole M. Bouvier, Sean T.H. Liu, Raymond A. Alvarez, Benjamin K. Chen
Phosphorylation of Smad3 is a critical mediator of TGF-β signaling, which plays an important role in regulating innate immune responses. However, whether Smad3 activation can be regulated in innate immune cells in TGF-β-independent contexts remains poorly understood. Here, we show that Smad3 is activated through the phosphorylation of its C-terminal residues (pSmad3C) in murine and human macrophages in response to bacterial and viral ligands, which is mediated by Activin A in a TGF-β independent manner. Specifically, infectious ligands, such as LPS, induced secretion of Activin A through the transcription factor STAT5 in macrophages, and Activin A signaling in turn activated pSmad3C. This Activin A-Smad3 axis controlled the mitochondrial ATP production and ATP conversion into adenosine by CD73 in macrophages, enforcing an anti-inflammatory mechanism. Consequently, mice with a deletion of Activin A receptor 1b specifically in macrophages (Acvr1bf/f-Lyz2cre) succumbed more to sepsis due to uncontrolled inflammation and exhibited exacerbated skin disease in a mouse model of imiquimod-induced psoriasis. Thus, we have revealed a previously unrecognized natural brake to inflammation in macrophages that occurs through the activation of Smad3 in an Activin A-dependent manner.
Thierry Gauthier, Yun-Ji Lim, Wenwen Jin, Na Liu, Liliana C. Patiño, Weiwei Chen, James Warren, Daniel Martin, Robert J. Morell, Gabriela S. Dveksler, Gloria H. Su, WanJun Chen
Multiple sclerosis (MS) is a complex genetically mediated autoimmune disease of the central nervous system where anti-CD20-mediated B cell depletion is remarkably effective in the treatment of early disease. While previous studies investigated the effect of B cell depletion on select immune cell subsets using flow cytometry-based methods, the therapeutic impact on patient immune landscape is unknown. In this study, we explored how B cell depleting therapies modulate the immune landscape using single-cell RNA sequencing (scRNAseq). We demonstrate that B cell depletion leads to cell type-specific changes in the abundance and function of CSF macrophages and peripheral blood monocytes. Specifically, a CSF-specific macrophage population with an anti-inflammatory transcriptomic signature and peripheral CD16+ monocytes increased in frequency post-B cell depletion. This was accompanied by increases in TNFα messenger RNA and protein in monocytes post-B cell depletion, consistent with the finding that anti-TNFα treatment exacerbates autoimmune activity in MS. In parallel, B cell depletion induced changes in peripheral CD4+ T cell populations, including increases in the frequency of TIGIT+ regulatory T cells and marked decreases in the frequency of myelin peptide loaded-tetramer binding CD4+ T cells. Collectively, this study provides an exhaustive transcriptomic map of immunological changes, revealing different cell-type specific reprogramming as a result of B cell depletion treatment in MS.
Jessica Wei, Jeonghyeon Moon, Yoshiaki Yasumizu, Le Zhang, Khadir Raddassi, Nicholas C. Buitrago-Pocasangre, M. Elizabeth Deerhake, Nicolas Strauli, Chun-Wei Chen, Ann Herman, Rosetta Pedotti, Catarina Raposo, Isaiah Yim, Jenna L. Pappalardo, Erin E. Longbrake, Tomokazu S. Sumida, Pierre-Paul Axisa, David A. Hafler
Clostridioides difficile infection (CDI) recurs in one of five patients. Monoclonal antibodies targeting the virulence factor TcdB reduce disease recurrence, suggesting that an inadequate anti-TcdB response to CDI leads to recurrence. In patients with CDI, we discovered that IL33 measured at diagnosis predicts future recurrence, leading us to test the role of IL33 signaling in the induction of humoral immunity during CDI. Using a mouse recurrence model, IL33 was demonstrated to be integral for anti-TcdB antibody production. IL33 acted via ST2+ ILC2 cells, facilitating germinal center T follicular helper (GC-Tfh) cell generation of antibodies. IL33 protection from reinfection was antibody-dependent, as mMT KO mice and mice treated with anti-CD20 mAb were not protected. These findings demonstrate the critical role of IL33 in generating humoral immunity to prevent recurrent CDI.
Farha Naz, Md Jashim Uddin, Nicholas M. Hagspiel, Mary K. Young, David Tyus, Rachel Boone, Audrey C. Brown, Girija Ramakrishnan, Isaura Rigo, Claire Fleming, Gregory R. Madden, William A. Petri Jr.