Hereditary pheochromocytoma and paraganglioma (hPPGL) is caused by pathogenic mutations in succinate dehydrogenase (SDH) genes, commonly SDHB. However, over 80% of SDHB missense variants are classified as variants of uncertain significance (VUS), limiting clinical interpretation and diagnostic utility of germline testing. To provide functional evidence of SDHB allele pathogenicity or benignity, we developed a cellular complementation assay that quantifies intracellular succinate/fumarate ratios as a readout of SDH enzymatic activity. This assay reliably distinguished pathogenic from benign alleles with high fidelity, outperforming and complementing computational predictions. Functional assessment of patient-derived VUS alleles supported reclassification of 87% of tested variants and revealed that mutations in the iron–sulfur cluster domain were amorphic, while those at or beyond the C-terminal residue Tyr273 retained function. Variants associated with Leigh syndrome retained activity, consistent with their biallelic inheritance and distinct pathogenic mechanisms from SDHB-related tumorigenesis. Notably, hypomorphic pathogenic SDHB variants correlated with increased head and neck paraganglioma occurrence, revealing a genotype–phenotype relationship. Functional characterization of SDHB missense variants supports clinical classification, informs hPPGL risk stratification, and has immediate diagnostic impact.
Sooyeon Lee, Leor Needleman, Julie Park, Rebecca C. Schugar, Qianjin Guo, James M. Ford, Justin P. Annes
Karen Hoffmann, Ulrike Behrendt, Peter Pennitz, Holger Kirsten, Jessica Pohl, Elena Lopez-Rodriguez, Chantal Weissfuss, Jens Kollmeier, Mario Tönnies, Sebastian Brill, Konrad Steinestel, Martin Witzenrath, Werner Wenzel, Christian Zobel, Geraldine Nouailles
Mixed hematopoietic chimerism after allogeneic hematopoietic cell transplantation (HCT) promotes tolerance of transplanted donor-matched solid organs, corrects autoimmunity, and could transform therapeutic strategies for autoimmune type 1 diabetes (T1D). However, development of non-toxic bone marrow conditioning protocols is needed to expand clinical use. We developed a chemotherapy-free, non-myeloablative (NMA) conditioning regimen that achieves mixed chimerism and allograft tolerance across MHC barriers in NOD mice. We obtained durable mixed hematopoietic chimerism in prediabetic NOD mice using anti-c-Kit monoclonal antibody, T-cell depleting antibodies, JAK1/2 inhibition, and low-dose total body irradiation prior to transplantation of MHC-mismatched B6 hematopoietic cells, preventing diabetes in 100% of chimeric NOD:B6 mice. In overtly diabetic NOD mice, NMA conditioning followed by combined B6 HCT and islet transplantation durably corrected diabetes in 100% of chimeric mice without chronic immunosuppression or graft-versus-host disease (GVHD). Chimeric mice remained immunocompetent, as assessed by blood count recovery and rejection of 3rd party allogeneic islets. Adoptive transfer studies and analysis of autoreactive T cells confirmed correction of autoimmunity. Analysis of chimeric NOD mice revealed central thymic deletion and peripheral tolerance mechanisms. Thus, with NMA conditioning and cell transplantation, we achieved durable hematopoietic chimerism without GVHD, promoted islet allograft tolerance, and reversed established T1D.
Preksha Bhagchandani, Stephan A. Ramos, Bianca Rodriguez, Xueying Gu, Shiva Pathak, Yuqi Zhou, Yujin Moon, Nadia Nourin, Charles A. Chang, Jessica Poyser, Brenda J. Velasco, Weichen Zhao, Hye-Sook Kwon, Richard Rodriguez, Diego M. Burgos, Mario A. Miranda, Everett Meyer, Judith A. Shizuru, Seung K. Kim
Secondary bacterial infection, often caused by Streptococcus pneumoniae (Spn), is one of the most frequent and severe complications of influenza A virus (IAV)-induced pneumonia. Phenotyping of the pulmonary immune cell landscape after IAV infection revealed a substantial depletion of the tissue-resident alveolar macrophage (TR-AM) population at day 7, which was associated with increased susceptibility to Spn outgrowth. To elucidate the molecular mechanisms underlying TR-AM depletion, and to define putative targets for treatment, we combined single-cell transcriptomics and cell-specific PCR profiling in an unbiased manner, using in vivo models of IAV infection and IAV/Spn co-infection. The TNF superfamily 14 (TNFSF14) ligand-receptor axis was revealed as the driving force behind post-influenza TR-AM death during the early infection phase, enabling the transition to pneumococcal pneumonia, while intrapulmonary transfer of genetically modified TR-AMs and antibody-mediated neutralization of specific pathway components alleviated disease severity. With a mainly neutrophilic expression and a high abundance in the bronchoalveolar fluid (BALF) of patients with severe virus-induced ARDS, TNFSF14 emerged as a key determinant of virus-driven lung injury. Targeting the TNFSF14-mediated intercellular communication network in the virus-infected lung can, therefore, improve host defense, minimizing the risk of subsequent bacterial pneumonia, and ameliorating disease outcome.
Christina Malainou, Christin Peteranderl, Maximiliano Ruben Ferrero, Ana Ivonne Vazquez-Armendariz, Ioannis Alexopoulos, Katharina Franz, Klara Knippenberg, Julian Better, Mohammad Estiri, Cheng-Yu Wu, Hendrik Schultheis, Judith Bushe, Maria-Luisa del Rio, Jose Ignacio Rodriguez-Barbosa, Klaus Pfeffer, Stefan Günther, Mario Looso, Achim Dieter Gruber, István Vadász, Ulrich Matt, Susanne Herold
A greater understanding of chronic lung allograft dysfunction (CLAD) pathobiology, the primary cause of mortality after lung transplantation (LTx), is needed to improve outcomes. The complement system links innate to adaptive immune responses and is activated early post-lung transplantation to form the C3 convertase, a critical enzyme that cleaves the central complement component C3. We hypothesized that LTx recipients with a genetic predisposition to enhanced complement activation have worse CLAD-free survival mediated through increased adaptive alloimmunity. We interrogated a known functional C3 polymorphism (C3R102G) that increases complement activation through impaired C3 convertase inactivation in two independent LTx recipient cohorts. C3R102G, identified in at least one out of three LTx recipients, was associated with worse CLAD-free survival, particularly in the subset of recipients who developed donor-specific antibodies (DSAs). In a mouse orthotopic lung transplant model, impaired recipient complement regulation led to B cell-dependent CLAD pathology despite moderate differences in graft-infiltrating effector T cells. Dysregulated complement regulation promoted intragraft accumulation of memory B cells and antibody-secreting cells, leading to increased local and circulating DSA levels in mice. In summary, genetic predisposition to complement activation is associated with an increased humoral response and worse CLAD-free survival.
Hrishikesh S. Kulkarni, Laneshia K. Tague, Daniel R. Calabrese, Fuyi Liao, Zhiyi Liu, Lorena Garnica, Nishanth R. Shankar, Xiaobo Wu, Devesha H. Kulkarni, Aayusha Thapa, Dequan Zhou, Yan Tao, Victoria E. Davis, Cory T. Bernadt, Derek E. Byers, Catherine Chen, Howard J. Huang, Chad A. Witt, Ramsey R. Hachem, Daniel Kreisel, John P. Atkinson, John R. Greenland, Andrew E. Gelman
William Ang, Travis D. Kerr, Ananya Kodiboyena, Cristina Valero, Joris L. Vos, Vladimir Makarov, Alex A. Adjei, Luc G.T. Morris, Stephanie L. Schmit, Natalie L. Silver, Sujata Patil, Daniel J. McGrail
Familial partial lipodystrophy 2 (FPLD2) is a rare disease characterized by adipose tissue loss and redistribution, and metabolic dysfunction. FPLD2 is caused by pathogenic variants in the LMNA gene, encoding nuclear lamins A/C, structural proteins that control nuclear function and gene expression. However, the mechanisms driving adipocyte loss in FPLD2 remain poorly defined. In this study, we recruited eight families with developing or established FPLD2 and performed clinical, histological, and transcriptomic analyses of subcutaneous adipose tissue biopsies. Bulk and single-nuclei RNA-sequencing revealed suppression of lipid metabolism and mitochondrial pathways, alongside increased inflammation. These signatures were mirrored in tamoxifen-inducible adipocyte-specific Lmna knockout mice, in which lamin A/C-deficient adipocytes shrank and disappeared. Lmna-deficient fibroblasts shared similar gene expression changes, linked to altered chromatin accessibility, underscoring lamin A/C’s potential regulatory role in lipid metabolism and inflammatory programs. By directly comparing atrophic and hypertrophic adipose depots in FPLD2, and integrating human, mouse, and in vitro models, this study provides new insights into disease progression and potential therapeutic targets.
Jessica N. Maung, Rebecca L. Schill, Akira Nishii, Maria Foss de Freitas, Bonje N. Obua, Marcus Nygård, Maria D. Mendez-Casillas, Isabel D.K. Hermsmeyer, Donatella Gilio, Ozge Besci, Yang Chen, Brian Desrosiers, Rose E. Adler, Anabela D. Gomes, Merve Celik Guler, Hiroyuki Mori, Romina M. Uranga, Ziru Li, Hadla Hariri, Liping Zhang, Anderson de Paula Souza, Keegan S. Hoose, Kenneth T. Lewis, Taryn A. Hetrick, Paul Cederna, Carey N. Lumeng, Susanne Mandrup, Elif A. Oral, Ormond A. MacDougald
Demyelination associated microglia (DMAM) orchestrate the regenerative response to demyelination by clearing myelin debris and promoting oligodendrocyte maturation. Peroxisomal metabolism has emerged as a candidate regulator of DMAMs, though the cell-intrinsic contribution in microglia remains undefined. Here we elucidate the role of peroxisome integrity in DMAMs using cuprizone mediated demyelination coupled with conditional knockout of peroxisome biogenesis factor 5 (PEX5) in microglia. Absent demyelination, PEX5 conditional knockout (PEX5cKO) had minimal impact on homeostatic microglia. However, during cuprizone-induced demyelination, the emergence of DMAMs unmasked a critical requirement for peroxisome integrity. At peak demyelination, PEX5cKO DMAMs exhibited increased lipid droplet burden and reduced lipophagy suggestive of impaired lipid catabolism. Although lipid droplet burden declined during the remyelination phase, PEX5cKO DMAMs accumulated intralysosomal crystals and curvilinear profiles, which features were largely absent in controls. Aberrant lipid processing was accompanied by elevated lysosomal damage markers and downregulation of the lipid exporter gene Apoe, consistent with defective lipid clearance. Furthermore, the disruptions in PEX5cKO DMAMs were associated with defective myelin debris clearance and impaired remyelination. Together, these findings delineate a stage-specific role for peroxisomes in coordinating lipid processing pathways essential to DMAM function and necessary for enabling a pro-remyelinating environment.
Joseph A. Barnes-Vélez, Xiaohong Zhang, Yaren L. Peña Señeriz, Kiersten A. Scott, Yinglu Guan, Jian Hu
BACKGROUND. Amyotrophic lateral sclerosis (ALS), the major adult-onset motor neuron disease, is preceded by an early period unrelated to motor symptoms, including altered sleep, with increased wakefulness and decreased deep NREM. Whether these alterations in sleep macroarchitecture are associated with, or even precede abnormalities in sleep-related EEG features remains unknown. METHODS. Here, we characterised sleep microarchitecture using polysomnography in patients with ALS (n=33) and controls (n=32), and in asymptomatic carriers of SOD1 or C9ORF72 mutations (n=57) and non-carrier controls (n=30). Patients and controls with factors that could confound sleep structure, including respiratory insufficiency, were prospectively excluded. Results were complemented in three ALS mouse models (Sod1G86R , Fus∆NLS/+ and TDP-43Q331K ). RESULTS. We observed a brain-wide reduction in the density of sleep spindles, slow oscillations and K-complexes in both early-stage ALS patients and presymptomatic gene carriers. These defects in sleep spindles and slow oscillations correlate with cognitive performance in both cohorts, particularly with scores on memory, verbal fluency and language function. Alterations in sleep microarchitecture were replicated in three mouse models and decreases in sleep spindles were rescued following intracerebroventricular supplementation of MCH or by the oral administration of a dual orexin receptor antagonist. CONCLUSION. Sleep microarchitecture is associated with cognitive deficits and is causally linked to aberrant MCH and orexin signalling in ALS. FUNDING. This work was funded by Agence Nationale de la Recherche (ANR-24-CE37-4064, ANR-10-IDEX-0002, ANR-20-SFRI-0012), Fondation Thierry Latran, Association Francaise de Recherche sur la sclérose latérale amyotrophique, Association Française contre les Myopathies (#28944), TargetALS and JPND.
Christina Lang, Simon J. Guillot, Dorothee Lule, Luisa T. Balz, Antje Knehr, Patrick Weydt, Johannes Dorst, Katharina Kandler, Hans-Peter Müller, Jan Kassubek, Laura Wassermann, Sandrine Da Cruz, Francesco Roselli, Albert C. Ludolph, Matei Bolborea, Luc Dupuis
Colitis-associated cancer (CAC) arises from a complex interplay between host and environmental factors. In this report, we investigated the role of the gut microbiome using Winnie mice, a UC-like model with a missense mutation in the Muc2 gene. Upon rederivation from a conventional (CONV) to a specific-pathogen-free (SPF) facility, Winnie mice developed severe colitis and, notably, spontaneous CAC that progressively worsened over time. In contrast, CONV Winnie showed only mild colitis but no tumorigenesis. By comparison, when rederived into germ-free (GF) conditions, SPF Winnie mice were protected from colitis and colon tumors, indicating an essential role for the gut microbiome in the development of CAC in these mice. Using shotgun metagenomics, metabolomics, and lipidomics, we identified a distinct pro-inflammatory microbial and metabolic signature that potentially drives the transition from colitis to CAC. Fecal microbiota transplantation (FMT), using either SPF Winnie or WT (Bl/6) donors into GF Winnie recipients, demonstrated that while colitis developed regardless of the donor, only FMT from SPF Winnie donors resulted in CAC. Our studies present a relevant model of CAC, providing strong evidence that the microbiome plays a key role in its pathogenesis, thereby challenging the concept of colon cancer as a strictly non-transmissible disease.
Giulio Verna, Stefania De Santis, Bianca N. Islam, Eduardo M. Sommella, Danilo Licastro, Liangliang Zhang, Fabiano De Almelda Celio, Emily N. Miller, Fabrizio Merciai, Vicky Caponigro, Wei Xin, Pietro Campiglia, Theresa T. Pizarro, Marcello Chieppa, Fabio Cominelli
Chronic inflammation leads to tissue fibrosis which can disrupt the function of the parenchyma of the organ and ultimately lead to organ failure. The most prevalent form of this occurs in chronic hepatitis which leads to liver fibrosis and, ultimately, cirrhosis and hepatic failure. Although there is no specific treatment for fibrosis, the phosphodiesterase 4 (PDE4) competitive inhibitors have been shown to ameliorate fibrosis in rodent models. However, competitive inhibitors of PDE4 have shown significantly reduced effectiveness due to severe gastrointestinal side effects. The PDE4 family is composed of four genes (PDE4A–D) with each having up to 9 differentially spliced isoforms. Here, we report that PDE4D expression is specifically elevated during the hepatic fibrosis stage of liver disease progression. Furthermore, the expression of the long isoforms of PDE4D is selectively elevated in activated hepatic stellate cells, leading to the enhanced accumulation of extracellular matrix components. In a mouse model of liver fibrosis, genetic ablation of PDE4D or pharmacological inhibition using D159687, a selective allosteric inhibitor targeting the long isoforms of PDE4D, suppresses the expression of inflammatory and profibrogenic genes. These findings establish the long isoforms of PDE4D as key drivers of liver fibrosis and highlight their potential as therapeutic targets to ameliorate liver fibrosis.
Jeonghan Kim, Heeeun Yoon, Seoung Chan Joe, Antoine Smith, Jinsung Park, Geunhye Hong, Ji Myeong Ha, Eun Bae Kim, Ekihiro Seki, Myung K. Kim, Hae-Ock Lee, Ho-Shik Kim, Jay H. Chung
Dalin Zhang, Chun-Lung Chiu, Fernando Jose Garcia Marques, Abel Bermudez, Christian R. Hoerner, Nicholas Hadi, Elise Wang, Thomas J. Metzner, Ludimila Trabanino, John T. Leppert, Hongjuan Zhao, Robert Tibshirani, Alice C. Fan, Sharon J. Pitteri, James D. Brooks
Jarne Beliën, Amber De Visscher, Bethany Pillay, Marjon Wouters, Verena Kienapfel, Eline Bernaerts, Tania Mitera, Nele Berghmans, Bénédicte Dubois, Leen Moens, Patrick Matthys, Isabelle Meyts
Vinaya Simha, Mary Kate LoPiccolo, Anna Platt, Rebecca J. Brown, Xandria Johnson, Deanna Alexis Carere, Colleen Donnelly, Matthew T. Snyder, Chao Xing, Thomas P. Mathews, Purva Gopal, Stephen C. Ward, Diana R. Tomchick, Anil K. Agarwal, Ralph J. DeBerardinis, Abhimanyu Garg
CAR-T therapy has led to significant improvements in patient survival. However, a subset of patients experience high-grade toxicities, including cytokine release syndrome (CRS) and immune cell-associated hematological toxicity (ICAHT). We utilized IL-2Rα knockout mice to model toxicities with elevated levels of IL6, IFNγ, and TNFα and increased M1-like macrophages. Onset of CRS was accompanied by a reduction in peripheral blood neutrophils due to disruption of bone marrow neutrophil homeostasis characterized by an increase in apoptotic neutrophils and a decrease in proliferative and mature neutrophils. Both non-tumor-bearing and Eμ-ALL tumor-bearing mice recapitulated the co-occurrence of CRS and neutropenia. IFNγ-blockade alleviated CRS and neutropenia without affecting CAR-T efficacy. Mechanistically, a Th1-Th17 imbalance was observed to drive co-occurrence of CRS and neutropenia in an IFNγ-dependent manner leading to decreased IL-17A and G-CSF, neutrophil production, and neutrophil survival. In patients, we observed an increase in the IFNγ-to-IL-17A ratio in the peripheral blood during high-grade CRS and neutropenia. We have uncovered a biological basis for ICAHT and provide support for the use of IFNγ-blockade to reduce both CRS and neutropenia.
Payal Goala, Yongliang Zhang, Nolan J. Beatty, Allan Pavy, Shannon L. McSain, Cooper J. Sailer, Muhammad Junaid Tariq, Showkat Hamid, Eduardo Cortes Gomez, Jianmin Wang, Duna Massillon, Maxwell Ilecki, Justin C. Boucher, Constanza Savid-Frontera, Sae Bom Lee, Hiroshi Kotani, Meredith L. Stone, Michael D. Jain, Marco L. Davila
The adaptor protein LNK/SH2B3 negatively regulates hematopoietic stem cell (HSC) homeostasis. Lnk-deficient mice show marked expansion of HSCs without premature exhaustion. Lnk deficiency largely restores HSC function in Fanconi Anemia (FA) mouse models and primary FA patient cells, albeit protective mechanisms remain enigmatic. Here, we uncover a novel role for LNK in regulating translesion synthesis (TLS) during HSC replication. Lnk deficiency reduced replication stress-associated DNA damage, particularly in the FA background. Lnk deficiency suppressed single-strand DNA breaks, while enhancing replication fork restart in FA-deficient HSCs. Diminished replication-associated damage in Lnk-deficient HSCs occurred commensurate with reduced ATR-p53 checkpoint activation that is linked to HSC attrition. Notably, Lnk deficiency ameliorated HSC attrition in FA mice without exacerbating carcinogenesis during ageing. Moreover, we demonstrated that enhanced HSC fitness from Lnk deficiency was associated with increased TLS activity via REV1 and, to a lesser extent, TLS polymerase eta. TLS polymerases are specialized to execute DNA replication in the presence of lesions or natural replication fork barriers that stall replicative polymerases. Our findings implicate elevated use of these specialized DNA polymerases as critical to the enhanced HSC function imparted by Lnk deficiency, which has important ramifications for stem cell therapy and regenerative medicine in general.
Brijendra Singh, Md Akram Hossain, Xiao Hua Liang, Jeremie Fages, Carlo Salas Salinas, Roger A. Greenberg, Wei Tong
Ciliary dysfunction results in multi-organ involved developmental diseases, collectively known as ciliopathies. The B9D1-B9D2-MKS1 protein complex maintains the gatekeeper function at the ciliary transition zone (TZ). However, the function of B9 proteins and the mechanisms underlying why different variants in the same B9 gene cause different ciliopathies are not fully understood. Here, we investigated the function of B9 proteins and revealed two critical functions. First, the B9 complex interacted with and anchored TMEM67 to the TZ membrane. Disruption of the B9-TMEM67 complex reduced posttranslational-modifications of axonemal microtubules due to deregulation of tubulin-modifying enzymes within cilia. Second, B9 proteins localized to centrioles prior to ciliogenesis, where they facilitated the initiation of ciliogenesis. Finally, we identified B9D2 variants in a cohort of patients with Joubert syndrome (JBTS). Consistent with the dual functions, we found that the JBTS-associated B9D2 variants primarily affected axonemal microtubule modifications without disrupting ciliogenesis, whereas the Meckel syndrome (MKS)-associated B9D2 variant disrupted both ciliogenesis and axonemal microtubule modifications. Thus, besides its role as a gatekeeper for ciliary membrane proteins, the B9 complex also controls axonemal microtubule post-translational modifications and early stages of ciliogenesis, providing insights into the distinct pathologies arising from different variants of the same gene.
Ruida He, Yan Li, Minjun Jin, Huike Jiao, Yue Shen, Qize Han, Xilang Pan, Suning Wang, Zaisheng Lin, Jingshi Li, Chao Lu, Dan Meng, Zongfu Cao, Qing Shang, Nan Lv, Kai Wan, Huafang Gao, Xu Ma, Haiyan Yin, Haishuang Chang, Liang Wang, Minna Luo, Junmin Pan, Chengtian Zhao, Muqing Cao
The E3 ligase SPOP plays a context-dependent role in cancer by targeting specific cellular proteins for degradation, thereby influencing cell behavior. However, its role in tumor immunity remains largely unexplored. In this study, we revealed that SPOP targeted the innate immune sensor STING for degradation in a CK1γ phosphorylation-dependent manner to promote melanoma growth. Stabilization of STING by escaping SPOP-mediated degradation enhanced anti-tumor immunity by increasing IFNβ production and ISG expression. Notably, small-molecule SPOP inhibitors not only blocked STING recognition by SPOP, but also acted as molecular glues, redirecting SPOP to target neo-substrates such as CBX4 for degradation. This CBX4 degradation led to increased DNA damage, which in turn activated STING and amplified innate immune responses. In a xenografted melanoma B16 tumor model, single-cell RNA-seq analysis demonstrated that SPOP inhibition induced the infiltration of immune cells associated with anti-PD1 responses. Consequently, SPOP inhibitors synergized with immune checkpoint blockade to suppress B16 tumor growth in syngeneic murine models and enhanced the efficacy of CD19-CAR-T therapy. Our findings highlight a molecular glue degrader property of SPOP inhibitors, with potential implications for other E3 ligase-targeting small molecules designed to disrupt protein-protein interactions.
Zhichuan Zhu, Xin Zhou, Max Xu, Jianfeng Chen, Kevin C. Robertson, Gatphan N. Atassi, Mark G. Woodcock, Allie C. Mills, Laura E. Herring, Gianpietro Dotti, Pengda Liu
Obesity is a major driver of type 2 diabetes (T2D) and related metabolic disorders, characterized by chronic inflammation and adipocyte dysfunction. However, the molecular triggers initiating these processes remain poorly understood. We identify FAM20C, a serine/threonine kinase, as an early obesity-induced mediator of adipocyte dysfunction. Fam20c expression is substantially upregulated in adipocytes in response to obesity, correlating with a proinflammatory transcriptional signature. Forced expression of Fam20c in adipocytes promotes robust upregulation of proinflammatory cytokines and induces insulin resistance that is dependent on its kinase activity. Conversely, deletion of adipocyte Fam20c after established obesity and hyperglycemia improves glucose tolerance, augments insulin sensitivity, and reduces visceral adiposity, without altering body weight. Phosphoproteomic studies reveal that FAM20C regulates phosphorylation of intracellular and secreted proteins, modulating pathways critical to inflammation, metabolism, and extracellular matrix remodeling. We identify FAM20C-dependent substrates, such as CNPY4, whose phosphorylation contributes to proinflammatory adipocyte signaling. Of translational relevance, we show that in humans visceral adipose FAM20C expression positively correlates with insulin resistance. Our findings establish FAM20C as an early regulator of obesity-induced adipocyte dysfunction and systemic metabolic impairment. Our studies provide proof of concept that inhibition of FAM20C may serve as a potential therapy for T2D by restoring adipocyte health.
Ankit Gilani, Benjamin D. Stein, Anne Hoffmann, Renan Pereira de Lima, Elizabeth E. Ha, Edwin A. Homan, Lunkun Ma, Alfonso Rubio-Navarro, Tint Tha Ra Wun, Gabriel Jose Ayala Carrascal, Bhavneet Bhinder, Adhideb Ghosh, Falko J. Noé, Olivier Elemento, Christian Wolfrum, Matthias Blüher, James C. Lo
Liver metastases are relatively resistant to checkpoint blockade immunotherapy. The hepatic tissue has distinctive features including high numbers of NK cells. It was therefore important to conduct in depth single-cell analysis of NK cells in colorectal cancer liver metastases (CRLMs) with the effort to dissect their diversity and to identify candidate therapeutic targets. By combining unbiased single-cell transcriptomic with multiparametric flow cytometry analysis, we identified an abundant family of intrahepatic CD56Bright NK cells in CRLMs endowed with anti-tumor functions resulting from specific transcriptional liver programs. Intrahepatic CD56Bright and CD56Dim NK lymphocytes expressed unique transcription factors (IRF8, TOX2), high level of chemokines, and targetable immune checkpoints (ICs), including CXCR4 and the IL-1 receptor family member IL-1R8. CXCR4 pharmacological blocking and an anti-IL-1R8 mAb enhanced the effector function of CRLM NK cells. Targeting the diversity of liver NK cells and their distinct immune-checkpoint repertoires is key to optimize the current immune-therapy protocols in CRLM.
Joanna Mikulak, Domenico Supino, Paolo Marzano, Sara Terzoli, Roberta Carriero, Valentina Cazzetta, Rocco Piazza, Elena Bruni, Paolo Kunderfranco, Alessia Donato, Sarah Natalia Mapelli, Roberto Garuti, Silvia Carnevale, Francesco Scavello, Elena Magrini, Jelena Zeleznjak, Clelia Peano, Matteo Donadon, Guido Costa, Guido Torzilli, Alberto Mantovani, Cecilia Garlanda, Domenico Mavilio