Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Inflammation

  • 301 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 30
  • 31
  • Next →
Caloric Restriction Promotes Resolution of Atherosclerosis in Obese Mice, while Weight Regain Accelerates its Progression
Bianca Scolaro, … , Ada Weinstock, Edward A. Fisher
Bianca Scolaro, … , Ada Weinstock, Edward A. Fisher
Published July 8, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI172198.
View: Text | PDF

Caloric Restriction Promotes Resolution of Atherosclerosis in Obese Mice, while Weight Regain Accelerates its Progression

  • Text
  • PDF
Abstract

While weight loss is highly recommended for those with obesity, >60% will regain their lost weight. This weight cycling is associated with elevated risk of cardiovascular disease, relative to never having lost weight. How weight loss/regain directly influence atherosclerotic inflammation is unknown. Thus, we studied short-term caloric restriction (stCR) in obese hypercholesterolemic mice, without confounding effects from changes in diet composition. Weight loss was found to promote atherosclerosis resolution independent of plasma cholesterol. From single-cell RNA-sequencing and subsequent mechanistic studies, this can be partly attributed to a unique subset of macrophages accumulating with stCR in epididymal white adipose tissue (eWAT) and atherosclerotic plaques. These macrophages, distinguished by high expression of Fcgr4, help to clear necrotic cores in atherosclerotic plaques. Conversely, weight regain (WR) following stCR accelerated atherosclerosis progression with disappearance of Fcgr4+ macrophages from eWAT and plaques. Furthermore, WR caused reprogramming of immune progenitors, sustaining hyper-inflammatory responsiveness. In summary, we have developed a model to investigate the inflammatory effects of weight cycling on atherosclerosis and the interplay between adipose tissue, bone marrow, and plaques. The findings suggest potential approaches to promote atherosclerosis resolution in obesity and weight cycling through induction of Fcgr4+ macrophages and inhibition of immune progenitor reprogramming.

Authors

Bianca Scolaro, Franziska Krautter, Emily J. Brown, Aleepta Guha Ray, Rotem Kalev-Altman, Marie Petitjean, Sofie Delbare, Casey Donahoe, Stephanie Pena, Michela L. Garabedian, Cyrus A. Nikain, Maria Laskou, Ozlem Tufanli, Carmen Hannemann, Myriam Aouadi, Ada Weinstock, Edward A. Fisher

×

Type 1 Classical Dendritic Cells Govern Long-term Cardiac Allograft Acceptance
Macee C. Owen, … , Daniel Kreisel, Kory J. Lavine
Macee C. Owen, … , Daniel Kreisel, Kory J. Lavine
Published July 8, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI192811.
View: Text | PDF

Type 1 Classical Dendritic Cells Govern Long-term Cardiac Allograft Acceptance

  • Text
  • PDF
Abstract

Authors

Macee C. Owen, Vinay R. Penna, Hao Dun, Wenjun Li, Benjamin J. Kopecky, Kenneth M. Murphy, Daniel Kreisel, Kory J. Lavine

×

Purinergic signaling modulates CD4+ T cells with cytotoxic potential during Trypanosoma cruzi infection
Gastón Bergero, … , Martin Rottenberg, Maria P. Aoki
Gastón Bergero, … , Martin Rottenberg, Maria P. Aoki
Published July 1, 2025
Citation Information: J Clin Invest. 2025;135(13):e186785. https://doi.org/10.1172/JCI186785.
View: Text | PDF

Purinergic signaling modulates CD4+ T cells with cytotoxic potential during Trypanosoma cruzi infection

  • Text
  • PDF
Abstract

Chagas disease, caused by Trypanosoma cruzi, is endemic to Latin America and is characterized by chronic inflammation of cardiac tissues due to parasite persistence. Hypoxia within infected tissues may trigger the stabilization of HIF-1 and be linked to ATP release. Extracellular ATP exhibits microbicidal effects but is scavenged by CD39 and CD73 ectonucleotidases, which ultimately generate adenosine (ADO), a potent immunosuppressor. Here, we comprehensively study the importance of HIF-1 stabilization and the CD39/CD73/ADO axis, on CD4+ T cells with the cytotoxic phenotype, in facilitating the persistence of T. cruzi. Myocardial infection induces prominent areas of hypoxia, which is concomitant with HIF-1α stabilization in T cells and linked to early expansion of CD39+CD73+CD4+ T cell infiltrating population. Functional assays further demonstrate that HIF-1 stabilization and CD73 activity are associated with impaired CD4+ T cell cytotoxic potential. RNA-Seq analysis reveals that HIF-1 and purinergic signaling pathways are overrepresented in cardiac tissues of patients with end-stage Chagas disease. The findings highlight a major effect of purinergic signaling on CD4+ T cells with potential cytotoxic capacity in the setting of T. cruzi infection and have translational implications for therapy.

Authors

Gastón Bergero, Yanina L. Mazzocco, Sebastian Del Rosso, Ruining Liu, Zoé M. Cejas Gallardo, Simon C. Robson, Martin Rottenberg, Maria P. Aoki

×

Targeting the IL-36 receptor with spesolimab mitigates residual inflammation and prevents generalized pustular psoriasis flares
James G. Krueger, … , Christian Thoma, Johann E. Gudjonsson
James G. Krueger, … , Christian Thoma, Johann E. Gudjonsson
Published July 1, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI188530.
View: Text | PDF

Targeting the IL-36 receptor with spesolimab mitigates residual inflammation and prevents generalized pustular psoriasis flares

  • Text
  • PDF
Abstract

Authors

James G. Krueger, Mrinal K. Sarkar, Mark G. Lebwohl, Akimichi Morita, Kenneth Gordon, Rachael Bogle, Christopher Cole, Anthony Coon, Richard G. Langley, Richard B. Warren, Arash Mostaghimi, Bruce Strober, A. David Burden, Min Zheng, Aaron R. Mangold, Milan J. Anadkat, Jonathan N. Barker, Joseph F. Merola, Lam C. Tsoi, Ming Tang, Kolja Becker, Denis Delic, Christian Thoma, Johann E. Gudjonsson

×

Inhibiting inflammation in adipocytes accelerates mammary tumor development in mice
Dae-Seok Kim, … , Chao Li, Philipp E. Scherer
Dae-Seok Kim, … , Chao Li, Philipp E. Scherer
Published June 17, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI187202.
View: Text | PDF

Inhibiting inflammation in adipocytes accelerates mammary tumor development in mice

  • Text
  • PDF
Abstract

Pro-inflammatory signaling in adipocytes is essential for healthy adipose expansion, remodeling, and tissue integrity. We investigated the effects of targeting inflammation in either adipocytes or mammary gland epithelial cells, in the context of mammary tumor development, by locally expressing the anti-inflammatory adenoviral RIDα/β protein complex in a cell type-specific manner. Suppression of adipocyte inflammation (“RIDad mice”) in a mammary tumor model driven by MMTV-PyMT (“PyMT-RIDad mice”) led to an elevated number of tumor-associated macrophages (TAMs) and upregulation of immunoregulatory molecules in the mammary fat pad (MFP). This was accompanied by metabolic dysfunction and abnormal mammary gland development. Importantly, this phenotype correlated with accelerated mammary tumor onset, enhanced growth, and lung metastasis. Tumors in PyMT-RIDad mice exhibited upregulated CD36 expression, suggesting enhanced fatty acid uptake. Conversely, suppression of inflammation in mammary gland epithelial cells by RIDα/β expression (“RIDMMTV mice”) decelerated mammary tumor growth without affecting tumor onset or macrophage accumulation. These findings highlight the differential impact on tumor development exerted through the suppression of inflammatory signals in different cell types in the microenvironment. Our results underscore the role of the suppression of adipocyte inflammation leading to a tumor-friendly microenvironment, promoting mammary cancer progression. This study sheds light on the complex interplay between inflammation, specifically driven by the adipocyte, in breast cancer pathogenesis.

Authors

Dae-Seok Kim, Toshiharu Onodera, Jan-Bernd Funcke, Kyounghee Min, Qingzhang Zhu, Qian Lin, Shiuhwei Chen, Chanmin Joung, Min Kim, R. Max Wynn, Joselin Velasco, Charlotte Lee, Megan Virostek, Chao Li, Philipp E. Scherer

×

Allergens abrogate anti-inflammatory DNA effects and unmasks macrophage-driven neutrophilic asthma via ILC2/STING/TNFα signaling
Anand Sripada, … , Andrew Getahun, Rafeul Alam
Anand Sripada, … , Andrew Getahun, Rafeul Alam
Published June 17, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI187907.
View: Text | PDF

Allergens abrogate anti-inflammatory DNA effects and unmasks macrophage-driven neutrophilic asthma via ILC2/STING/TNFα signaling

  • Text
  • PDF
Abstract

The mechanism of neutrophilic and mixed neutrophilic-eosinophilic asthma is poorly understood. We found that extracellular DNA and nucleosomes (Nuc) were elevated in the airways from neutrophilic-eosinophilic asthma patients and correlated with bronchoalveolar lavage neutrophils. Bronchial tissue from neutrophilic-eosinophilic asthma expressed increased DNA sensor-positive cells. Intranasally administered DNA did not induce airway hyperreactivity (AHR) or any pathology but induced AHR and neutrophilic-eosinophilic inflammation when co- administered with the allergen Alternaria (Alt). Nuc alone induced anti-inflammatory/defensive genes whereas the Nuc-Alt combo increased TNF and innate cytokines. The Alt-Nuc phenotype was abolished in Cgas-/-, ALR-/-, Sting-/-, LysMCre:Stingf/f, IL7RCre:Rorαf/f and Tnfr2-/- mice. Alt, unexpectedly, played an essential role in the Nuc-induced phenotype. It abrogated Nuc-induction of anti-inflammatory genes, facilitated Nuc uptake, induced ILC2s, which, in presence of Nuc, produced high levels of TNFα and promoted neutrophilic infiltration. We established a paradigm where allergens inhibit the anti-inflammatory effects of DNA/Nuc and facilitate STING-TNFα-driven neutrophilic-eosinophilic inflammation in asthma.

Authors

Anand Sripada, Divya Verma, Rangati Varma, Kapil Sirohi, Carolyn Kwiat, Mohini Pathria, Mukesh Verma, Anita Sahu, Vamsi P. Guntur, Laurie A. Manka, Brian Vestal, Camille M. Moore, Richard J. Martin, Magdalena M. Gorska, John Cambier, Andrew Getahun, Rafeul Alam

×

Gestational hypertension increases risk of seizures in children and mice
Baojian Xue, … , Jason M. Misurac, Alexander G. Bassuk
Baojian Xue, … , Jason M. Misurac, Alexander G. Bassuk
Published June 16, 2025
Citation Information: J Clin Invest. 2025;135(12):e183393. https://doi.org/10.1172/JCI183393.
View: Text | PDF

Gestational hypertension increases risk of seizures in children and mice

  • Text
  • PDF
Abstract

Gestational hypertension (GH) is prevalent, with life-long health burdens for mothers and their children exposed in utero. We analyzed the nation-wide Epic Cosmos dataset and found significantly higher rates of seizures in children of mothers with GH than in children of normotensive mothers. Complementary studies of nested Iowa and Stanford cohorts and a large Taiwanese cohort also revealed significantly increased seizure risk after covariate adjustments. We modeled this association in an angiotensin (ANG) II mouse model of GH. Maternal ANG II significantly increased seizure grade and deaths elicited by pilocarpine among male but not female offspring. Electrical stimulation increased seizure grade and death across sexes in offspring from ANG II–treated dams. Proinflammatory and microglial gene expression in the brain were upregulated only in male offspring from ANG II–treated dams. Chronic phenylephrine, a GH model lacking the maternal proinflammatory aspects of ANG II, induced similar offspring seizure phenotypes. PLX5622-induced depletion of microglia or antiinflammatory pentoxifylline abolished this sensitized seizure response and lowered mortality in the ANG II model. These results suggest that GH programs offspring risk for seizures in a sex-dependent manner in humans and mice. Neuroinflammatory mechanisms may contribute to the elevated sensitivity and mortality from seizures elicited by GH exposure in utero.

Authors

Baojian Xue, Serena B. Gumusoglu, Grant Tiarks, Brittany P. Todd, Angela Wong, Donna A. Santillan, Chin-Chi Kuo, Hsiu-Yin Chiang, Rohith Ravindranath, Sophia Y. Wang, Vinit B. Mahajan, Alan Kim Johnson, Heath A. Davis, Polly Ferguson, Elizabeth A. Newell, Mark K. Santillan, Jason M. Misurac, Alexander G. Bassuk

×

Wilms’ tumor 1 impairs apoptotic clearance of fibroblasts in distal fibrotic lung lesions
Harshavardhana H. Ediga, … , Francis X. McCormack, Satish K. Madala
Harshavardhana H. Ediga, … , Francis X. McCormack, Satish K. Madala
Published June 10, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI188819.
View: Text | PDF

Wilms’ tumor 1 impairs apoptotic clearance of fibroblasts in distal fibrotic lung lesions

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease characterized by impaired fibroblast clearance and excessive extracellular matrix (ECM) protein production. Wilms' Tumor 1 (WT1), a transcription factor, is selectively upregulated in IPF fibroblasts. However, the mechanisms by which WT1 contributes to fibroblast accumulation and ECM production remain unknown. Here, we investigated the heterogeneity of WT1-expressing mesenchymal cells using single-nucleus RNA sequencing of distal lung tissues from IPF patients and control donors. WT1 was selectively upregulated in a subset of IPF fibroblasts that co-expressed several pro-survival and ECM genes. The results of both loss-of-function and gain-of-function studies are consistent with a role for WT1 as a positive regulator of pro-survival genes to impair apoptotic clearance and promote ECM production. Fibroblast-specific overexpression of WT1 augmented fibroproliferation, myofibroblast accumulation, and ECM production during bleomycin-induced pulmonary fibrosis in young and aged mice. Together, these findings suggest that targeting WT1 is a promising strategy for attenuating fibroblast expansion and ECM production during fibrogenesis.

Authors

Harshavardhana H. Ediga, Chanukya P. Vemulapalli, Vishwaraj Sontake, Pradeep K. Patel, Hikaru Miyazaki, Dimitry Popov, Martin B. Jensen, Anil G. Jegga, Steven K. Huang, Christoph Englert, Andreas Schedl, Nishant Gupta, Francis X. McCormack, Satish K. Madala

×

The macrophage-intrinsic MDA5-IRF5 axis drives HIV-1 intron-containing RNA-induced inflammatory responses
Sita Ramaswamy, … , Manish Sagar, Suryaram Gummuluru
Sita Ramaswamy, … , Manish Sagar, Suryaram Gummuluru
Published June 10, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI187663.
View: Text | PDF

The macrophage-intrinsic MDA5-IRF5 axis drives HIV-1 intron-containing RNA-induced inflammatory responses

  • Text
  • PDF
Abstract

Despite effective antiretroviral therapy (ART), transcriptionally competent HIV-1 reservoirs persist and contribute to persistent immune activation in people living with HIV (PWH). HIV-1-infected macrophages are important mediators of chronic innate immune activation, though mechanisms remain unclear. We previously reported that nuclear export and cytoplasmic expression of HIV-1 intron-containing RNA (icRNA) activates mitochondrial antiviral signaling protein (MAVS)-mediated type I interferon (IFN) responses in macrophages. In this study, we demonstrate an essential role of melanoma differentiation-associated protein 5 (MDA5) in sensing HIV-1 icRNA and promoting MAVS-dependent IRF5 activation in macrophages. Suppression of MDA5, but not RIG-I expression nor disruption of endosomal TLR pathway, abrogated HIV-1 icRNA-induced type I IFN responses and IP-10 expression in macrophages. Furthermore, induction of IP-10 in macrophages upon HIV-1 icRNA sensing by MDA5 was dependent on IRF5. Additionally, monocytes and MDMs from older (>50 years) individuals exhibit constitutively higher levels of IRF5 expression compared to younger (<35 years) individuals, and HIV-1 icRNA induced IP-10 expression was significantly enhanced in older macrophages, which was attenuated upon ablation of IRF5 expression suggesting that IRF5 functions as a major mediator of pro-inflammatory response downstream of MDA5-dependent HIV-1 icRNA sensing, dysregulation of which might contribute to chronic inflammation in older PWH.

Authors

Sita Ramaswamy, Hisashi Akiyama, Jacob Berrigan, Andrés A. Quiñones-Molina, Alex J. Olson, Yunhan Chen, YanMei Liang, Andrew J. Henderson, Archana Asundi, Manish Sagar, Suryaram Gummuluru

×

Thrombospondin-1 inhibits alternative complement pathway activation in antineutrophil cytoplasmic antibody-associated vasculitis
Swagata Konwar, … , Todor Tschongov, Karsten Häffner
Swagata Konwar, … , Todor Tschongov, Karsten Häffner
Published May 8, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI180062.
View: Text | PDF

Thrombospondin-1 inhibits alternative complement pathway activation in antineutrophil cytoplasmic antibody-associated vasculitis

  • Text
  • PDF
Abstract

Complement activation is a relevant driver in the pathomechanisms of vasculitis. The involved proteins in the interaction between endothelia, complement and platelets in these conditions are only partially understood. Thrombospondin-1 (TSP-1), found in platelet α-granules and released from activated endothelial cells, interacts with factor H (FH) and von Willebrand factor (vWF). However, direct regulatory interaction with the complement cascade has not yet been described. We could show that TSP-1 is a potent, FH-independent inhibitor of the alternative complement pathway. TSP-1 binds to complement proteins, inhibits cleavage of C3 and C5 and the formation of the membrane attack complex. Complement-regulatory function is validated in blood samples from patients with primary complement defects. Physiological relevance of TSP-1 is demonstrated in ANCA-associated vasculitis (AAV) patients by significantly enhanced TSP-1 staining in glomerular lesions and increased complement activity and NETosis following TSP-1 deficiency in an in vitro and in vivo model of AAV. The newly described complement-inhibiting function of TSP-1 represents an important mechanism in the interaction of endothelia and complement. In particular, the interplay between released TSP-1 and the complement system locally, especially on surfaces, influences the balance between complement activation and inhibition and may be relevant in various vascular diseases.

Authors

Swagata Konwar, Sophie Schroda, Manuel Rogg, Jessika Kleindienst, Eva L. Decker, Martin Pohl, Barbara Zieger, Jens Peter Panse, Hong Wang, Robert Grosse, Christoph Schell, Sabine Vidal, Xiaobo Liu, Christian Gorzelanny, Todor Tschongov, Karsten Häffner

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 30
  • 31
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts