Mutations in DNA mismatch repair (MMR) pathway genes (MSH2, MSH6, MLH1, and PMS2) are linked to acquired resistance to temozolomide (TMZ) and high tumor mutation burden (TMB) in high-grade gliomas (HGG), including glioblastoma (GBM). However, the specific roles of individual MMR genes in the initiation, progression, TMB, microsatellite instability (MSI), and resistance to TMZ in glioma remain unclear. Here, we developed de novo mouse models of germline and somatic MMR-deficient (MMRd) HGG. Surprisingly, loss of Msh2 or Msh6 does not lead to high TMB, MSI, nor confer response to anti-PD-1 in GBM. Similarly, human GBM shows discordance between MMR gene mutations and TMB/MSI.Germline MMRd leads to promoted progression from low-grade to HGG and reduced survival compared to MMR-proficient (MMRp) tumor-bearing mice. This effect is not tumor cell intrinsic but is associated with MMRd in the tumor immune microenvironment, driving immunosuppressive myeloid programs, reduced lymphoid infiltration, and CD8+ T cell exhaustion. Both MMR-reduced (MMRr) and MMRd GBM are resistant to temozolomide (TMZ), unlike MMRp tumors. Our study shows that KL-50, a imidazotetrazine-based DNA targeting agent inducing MMR-independent cross-link–mediated cytotoxicity, was effective against germline and somatic MMRr/MMRd GBM, offering a potential therapy for TMZ-resistant HGG with MMR alterations.
Montserrat Puigdelloses Vallcorba, Nishant Soni, Seung-Won Choi, Kavita Rawat, Tanvi Joshi, Sam Friedman, Alice Buonfiglioli, Angelo Angione, Zhihong Chen, Gonzalo Piñero, Gabrielle Price, Mehek Dedhia, Raina Roche, Emir Radkevich, Anne M. Bowcock, Deepti Bhatt, Winfried Edelmann, Robert M. Samstein, Timothy E. Richardson, Nadejda M. Tsankova, Alexander M. Tsankov, Ranjit S. Bindra, Raul Rabadan, Juan C. Vasquez, Dolores Hambardzumyan
PP2A B55α, a regulatory subunit of protein phosphatase 2 (PP2A), is underexpressed in over 40% of non-small cell lung cancer (NSCLC) cases due to loss of heterozygosity of PPP2R2A, the gene encoding this protein. Given that low PPP2R2A expression correlates with poor prognosis, treating PPP2R2A-deficient NSCLC represents an unmet medical need. Here, we show that PPP2R2A knockdown or its heterozygosity (PPP2R2A+/–) increases cytosolic DNA, leading to cGAS-STING-type I interferon (IFN) pathway activation. PPP2R2A deficiency results in elevated expression of immune checkpoint protein PD-L1 via GSK-3β- and STING-dependent mechanisms. PPP2R2A+/– cancer cells have enhanced sensitivity to PD-L1 blockade in a mouse model of lung cancer due to modulation of the tumor immune microenvironment, resulting in increased NK cells and reduced infiltration and function of regulatory T cells (Tregs). Consequently, PD-L1 antibody treatment increases CD8+ T infiltration and activity, especially in tumors with PPP2R2A heterozygosity. Further, systemic or Treg-specific IFNAR1 blockade reduces the efficacy of PD-L1 blockade in PPP2R2A+/– tumors. Patients with NSCLC with a low PPP2R2A/PD-L1 ratio respond better to immune checkpoint blockade (ICB). These findings underscore the therapeutic potential of ICB in treating PPP2R2A-deficient NSCLC while suggesting that PPP2R2A deficiency could serve as a biomarker for guiding ICB-based therapies.
Zhaojun Qiu, No-Joon Song, Anqi Li, Deepika Singh, Chandra B. Prasad, Chunhong Yan, David P. Carbone, Qi-en Wang, Xiaoli Zhang, Zihai Li, Junran Zhang
Mitochondrial fission is mediated by dynamin-related protein 1 (gene name DNM1L) and fusion by mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1). The role of mitochondrial dynamics in liver disease and cancer remains poorly understood. We used single, double, and triple liver-specific knockout (KO) mice lacking mitochondrial fission and fusion proteins, along with systematic analyses of mitochondrial morphology, untargeted metabolomics, RNA sequencing, hydrodynamic tail vein injection of oncogenes, and human hepatocellular carcinoma samples. Liver-specific Dnm1l KO (L-Dnm1l) mice showed increased ALT levels and hepatic fibrosis, with spontaneous liver tumors developing by 12 to 18 months of age. L-Mfn1 KO and L-Mfn2 KO mice showed no significant liver damage or tumor development, although a small percentage of double knockout (DKO) mice developed tumors. Triple knockout of Dnm1l, Mfn1, and Mfn2 (TKO) mice experienced significantly reduced liver injury and fibrosis, along with decreased spontaneous and oncogene-induced tumorigenesis. L-Dnm1l KO mice showed increased activation of the cGAS-STING-interferon pathway and pyrimidine metabolism, which were significantly normalized in TKO mice. Deletion of hepatic cGas reduced both basal and oncogene-induced liver injury and tumor development in L-Dnm1l KO mice. These findings indicate that mitochondrial dynamics are crucial for maintaining hepatic pyrimidine metabolism and regulating the cGAS-STING-mediated immune response to prevent liver tumorigenesis.
Xiaowen Ma, Xiaoli Wei, Mengwei Niu, Chen Zhang, Zheyun Peng, Wanqing Liu, Junrong Yan, Xiaoyang Su, Lichun Ma, Shaolei Lu, Wei Cui, Hiromi Sesaki, Wei-Xing Zong, Hong-Min Ni, Wen-Xing Ding
While current antivirals primarily target viral proteins, host-directed strategies remain underexplored. Here, we performed a genome-wide CRISPRi screening to identify the host protein, Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate (HGS), as essential for the pan-coronaviruses infection both in vitro and in vivo. Mechanistically, HGS directly interacts with the viral membrane (M) protein, facilitating its trafficking to the ER-Golgi intermediate compartment (ERGIC) for virion assembly. Conversely, HGS deficiency caused M retention in the ER, blocking assembly. Leveraging this interaction, we designed M-derived peptides and screened over 5,000 FDA-approved drugs, identifying riboflavin tetrabutyrate (RTB). Both the peptides and RTB bind HGS and disrupt its interaction with the M protein, leading to M retention in the ER and subsequent blockade of virion assembly. These agents demonstrated broad anti-pan-coronavirus activity in vitro and in vivo. Collectively, our findings establish HGS as a druggable host target and identify RTB as a promising broad-spectrum antiviral candidate.
Xubing Long, Rongrong Chen, Rong Bai, Buyun Tian, Yu Cao, Kangying Chen, Fuyu Li, Yiliang Wang, Yongjie Tang, Qi Yang, Liping Ma, Fan Wang, Maoge Zhou, Xianjie Qiu, Yongzhi Lu, Jie Zheng, Peng Zhou, Xinwen Chen, Qian Liu, Xuepeng Wei, Yongxia Shi, Yanhong Xue, Jincun Zhao, Wei Ji, Liqiao Hu, Jinsai Shang, Tao Xu, Zonghong Li
Mechanistic target of rapamycin complex 1 (mTORC1) is a master controller of cell growth and its dysregulation is associated with cancer. KICSTOR, a complex comprising KPTN, ITFG2, C12orf66, and SZT2, functions as a critical negative regulator of amino acid-induced mTORC1 activation. However, the regulatory mechanisms governing KICSTOR remain largely unclear. In this study, we identify FBXO2 as a key modulator of amino acid-dependent mTORC1 signaling. Mechanistically, FBXO2 colocalizes and directly interacts with KPTN via its F-box-associated domain, promoting K48- and K63-linked polyubiquitination of KPTN at lysine residues 49, 67, 262, and 265. FBXO2-mediated KPTN ubiquitination disrupts its interaction with ITFG2 and SZT2, while enhancing its interaction with C12orf66, thereby impairing the ability of KICSTOR to recruit the GATOR1 complex to the lysosomal surface. Notably, FBXO2 protein levels are substantially upregulated in liver cancer patients and FBXO2-mediated KPTN ubiquitination facilitates the progression of hepatocellular carcinoma (HCC). These results reveal a key regulatory mechanism of the mTORC1 signaling and highlight FBXO2 and KPTN ubiquitination as therapeutic targets for HCC treatment.
Jianfang Gao, Jina Qing, Xianglong Li, Yuxuan Luo, Lingwen Huang, Hongxia Li, Huan Zhang, Jiao Zhang, Pei Xiao, Jinsong Li, Tingting Li, Shanping He
Triple-negative breast cancer (TNBC), being both aggressive and highly lethal, poses a major clinical challenge in terms of treatment. Its heterogeneity and lack of hormone receptors or HER2 expression further restrict the availability of targeted therapy. Breast cancer stem cells (BCSCs), known to fuel TNBC malignancy, are now being exploited as a vulnerability for TNBC treatment. Here, we dissected the transcriptome of BCSCs and identified kinesin family member 20A (KIF20A) as a key regulator of BCSC survival and TNBC tumorigenesis. Genetic depletion or pharmacological inhibition of KIF20A impairs BCSC viability and tumor initiation and development in vitro and in vivo. Mechanistically, KIF20A supports BCSC stemness through modulation of mitochondrial oxidative phosphorylation, which is repressed by SMARCA4, a component of the SWI/SNF chromatin remodeling complex. Therapeutically, KIF20A inhibition sensitizes TNBC xenografts to standard-of-care chemotherapy. Our study highlights the importance of targeting KIF20A to exploit BCSC vulnerabilities in TNBC.
Yayoi Adachi, Weilong Chen, Cheng Zhang, Tao Wang, Nina Gildor, Rachel Shi, Haoyong Fu, Masashi Takeda, Qian Liang, Fangzhou Zhao, Hongyi Liu, Jun Fang, Jin Zhou, Hongwei Yao, Lianxin Hu, Shina Li, Lei Guo, Lin Xu, Ling Xie, Xian Chen, Chengheng Liao, Qing Zhang
Genome instability is most commonly caused by replication stress, which also renders cancer cells extremely vulnerable once their response to replication stress is impeded. Topoisomerase II binding protein 1 (TOPBP1), an allosteric activator of ataxia telangiectasia and Rad3-related kinase (ATR), coordinates ATR in replication stress response and has emerged as a potential therapeutic target for tumors. Here, we identify auranofin, the FDA-approved drug for rheumatoid arthritis, as a lead compound capable of binding to the BRCT 7–8 domains and blocking TOPBP1 interaction with PHF8 and FANCJ. The liquid-liquid phase separation of TOPBP1 is also disrupted by auranofin. Through targeting these TOPBP1-nucleated molecular machineries, auranofin leads to an accumulation of replication defects by impairing ATR activation and attenuating replication protein A loading on perturbed replication forks, and it shows significant anti–breast tumor activity in combination with a PARP inhibitor. This study provides mechanistic insights into how auranofin challenges replication integrity and expands the application of this FDA-approved drug in breast tumor intervention.
Shuai Ma, Yingying Han, Rui Gu, Qi Chen, Qiushi Guo, Yuan Yue, Cheng Cao, Ling Liu, Zhenzhen Yang, Yan Qin, Ying Yang, Kai Zhang, Fei Liu, Lin Liu, Na Yang, Jihui Hao, Jie Yang, Zhi Yao, Xiaoyun Mao, Lei Shi
Statins lower cholesterol, reducing the risk of heart disease, and are among the most frequently prescribed drugs. Approximately 10% of individuals develop statin-associated muscle symptoms (SAMS; myalgias, rhabdomyolysis, and muscle weakness), often rendering them statin intolerant. The mechanism underlying SAMS remains poorly understood. Patients with mutations in the skeletal muscle ryanodine receptor 1 (RyR1)/calcium release channel can be particularly intolerant of statins. High-resolution structures revealed simvastatin binding sites in the pore region of RyR1. Simvastatin stabilized the open conformation of the pore and activated the RyR1 channel. In a mouse expressing a mutant RyR1-T4709M found in a patient with profound statin intolerance, simvastatin caused muscle weakness associated with leaky RyR1 channels. Cotreatment with a Rycal drug that stabilizes the channel closed state prevented simvastatin-induced muscle weakness. Thus, statin binding to RyR1 can cause SAMS, and patients with RyR1 mutations may represent a high-risk group for statin intolerance.
Gunnar Weninger, Haikel Dridi, Steven Reiken, Qi Yuan, Nan Zhao, Linda Groom, Jennifer Leigh, Yang Liu, Carl Tchagou, Jiayi Kang, Alexander Chang, Estefania Luna-Figueroa, Marco C. Miotto, Anetta Wronska, Robert T. Dirksen, Andrew R. Marks
During the progression of acute myeloid leukemia (AML), extramedullary hematopoiesis (EMH) compensates for impaired bone marrow hematopoiesis. However, the specific cellular dynamics of EMH and its influence on AML progression remain poorly understood. In this study, we identified a substantial expansion of the CD81+ erythroblast subpopulation (CD81+ Erys) in the spleens of AML mice, which promoted AML cell proliferation and reduced survival. Mechanistically, CD81+ Erys secrete elevated levels of macrophage migration-inhibitory factor (MIF), which interacted with the CD74 receptor on AML cells, activating the mTORC1 signaling pathway and upregulating Egln3. Consequently, AML cells cocultured with CD81+ Erys exhibited reprogrammed phospholipid metabolism, characterized by an increased phospholipid-to-lysophospholipid ratio. Modulating this metabolic shift, either by supplementing exogenous lysophospholipids or depleting Egln3 in AML cells, restored the phospholipid balance and mitigated the protumorigenic effects induced by CD81+ Erys. Overall, our findings elucidate the molecular crosstalk between erythroblasts and AML cells, extend our insights into the mechanisms driving AML progression, and suggest potential therapeutic strategies.
Yue Li, Jiaxuan Cao, Jingyuan Tong, Peixia Tang, Haoran Chen, Guohuan Sun, Zining Yang, Xiaoru Zhang, Fang Dong, Shangda Yang, Jie Gao, Xiangnan Zhao, Jinfa Ma, Di Wang, Lei Zhang, Lin Wang, Tao Cheng, Hui Cheng, Lihong Shi
KRAS mutations serve as key oncogenic drivers in the initiation and progression of pancreatic ductal adenocarcinoma (PDAC). Despite the advancement of KRAS inhibitors like MRTX1133 for PDAC treatment, intrinsic and acquired resistance remain major barriers to their clinical efficacy. This study underscored the role of histone deacetylase 5 (HDAC5) loss in mediating intrinsic resistance to KRASG12D inhibitors. Mechanistically, HDAC5 promoted c-Myc degradation by deacetylating K148, thereby facilitating NEDD4-mediated ubiquitination at this site. The loss of HDAC5 resulted in hyperacetylation of c-Myc at K148, impeding the ubiquitination and subsequent degradation process of c-Myc following deacetylation. Consequently, c-Myc stability and transcriptional activity were sustained even under KRAS-MEK-ERK pathway inhibition, reinforcing MAPK signaling and promoting cell survival despite KRAS suppression. Our data further demonstrated that pharmacological or genetic inhibition of c-Myc effectively reversed the resistance phenotype mediated by HDAC5 loss, suggesting a therapeutic strategy centered on "KRAS-MYC dual-node blockade." Furthermore, the expression levels of HDAC5 and the acetylation status of c-Myc may serve as potential biomarkers for predicting the therapeutic response to MRTX1133. These findings provide insights into overcoming resistance to KRASG12D inhibitors and offer potential biomarkers and combinatorial therapeutic strategies for precision treatment of PDAC.
Taoyu Chen, Haixin Yu, Keshan Wang, Gengdu Qin, Yuhan Zhao, Xueyi Liang, Yuxuan Li, Tianhao Zou, Jiaying Liu, Jingyuan Zhao, Zhiqiang Liu, Ruozheng Wei, Bo Wang, Shanmiao Gou, Tao Yin, Heshui Wu, Xin Jin, Yingke Zhou
No posts were found with this tag.