Tumor Necrosis Factor (TNF) is an important mediator in numerous inflammatory diseases, e.g., in inflammatory bowel diseases (IBD). In IBD, acute increases in TNF production can lead to disease flares. Glucocorticoids (GCs), which are steroids that bind and activate the glucocorticoid receptor (GR), are able to protect animals and humans against acute TNF-induced inflammatory symptoms. Mice with a poor transcriptional response of GR-dimer-dependent target genes were studied in a model of TNF-induced lethal inflammation. In contrast to the GRwt/wt mice, these GRdim/dim mice displayed a significant increase in TNF sensitivity and a lack of protection by the GC dexamethasone (DEX). Unchallenged GRdim/dim mice had a strong interferon-stimulated gene (ISG) signature, along with STAT1 upregulation and phosphorylation. This ISG signature was gut specific and, based on our studies with antibiotics, depended on the gut microbiota. GR dimers directly bound to short DNA sequences in the STAT1 promoter known as inverted repeat negative GRE (IR-nGRE) elements. Poor control of STAT1 in GRdim/dim mice led to failure to repress ISG genes resulting in excessive necroptosis induction by TNF. Our findings support a critical interplay between gut microbiota, interferons, necroptosis and GR in both the basal response to acute inflammatory challenges and in the pharmacological intervention by GCs.
Marlies Ballegeer, Kelly Van Looveren, Steven Timmermans, Melanie Eggermont, Sofie Vandevyver, Fabien Thery, Karen Dendoncker, Jolien Souffriau, Jolien Vandewalle, Lise Van Wyngene, Riet De Rycke, Nozomi Takahashi, Peter Vandenabeele, Jan Tuckermann, Holger M. Reichardt, Francis Impens, Rudi Beyaert, Karolien De Bosscher, Roosmarijn E. Vandenbroucke, Claude Libert
BACKGROUND. Recombinant leptin (metreleptin) ameliorates hyperphagia and metabolic abnormalities in leptin-deficient humans with lipodystrophy. We aimed to determine whether metreleptin improves glucose and lipid metabolism in humans when food intake is held constant. METHODS. Patients with lipodystrophy were hospitalized for 19 days with food intake held constant by controlled diet in an inpatient metabolic ward. In a non-randomized cross-over design, previously metreleptin-treated patients (n = 8) were continued on-metreleptin for five days, and off-metreleptin for the next 14 days (withdrawal cohort). This order was reversed in metreleptin-naïve patients (n = 14), who were restudied after six months of metreleptin treatment on an ad libitum diet (initiation cohort). Outcomes included insulin sensitivity by hyperinsulinemic-euglycemic clamp, fasting glucose and triglycerides, lipolysis measured using isotopic tracers, and liver fat by magnetic resonance spectroscopy. RESULTS. With food intake constant, peripheral insulin sensitivity decreased by 41% after stopping metreleptin for 14 days (withdrawal cohort) and increased by 32% after starting metreleptin for 14 days (initiation cohort). In the initiation cohort only, metreleptin decreased fasting glucose by 11%, triglycerides by 41%, and increased hepatic insulin sensitivity. Liver fat decreased from 21.8% to 18.7%. In the initiation cohort, lipolysis did not change independent of food intake, but decreased after six months on metreleptin on an ad libitum diet by 30% (palmitate turnover) to 35% (glycerol turnover). CONCLUSION. Using lipodystrophy as a human model of leptin deficiency and replacement, we showed that metreleptin improves insulin sensitivity, and decreases hepatic and circulating triglycerides, independent of its effects on food intake. TRIAL REGISTRATION. ClinicalTrials.gov, NCT01778556. FUNDING. This research was supported by the intramural research program of the National Institute of Diabetes and Digestive and Kidney Diseases.
Rebecca J. Brown, Areli Valencia, Megan Startzell, Elaine Cochran, Peter J. Walter, H. Martin Garraffo, Hongyi Cai, Ahmed M. Gharib, Ronald Ouwerkerk, Amber B. Courville, Shanna Bernstein, Robert J. Brychta, Kong Y. Chen, Mary Walter, Sungyoung Auh, Phillip Gorden
HIV-1 acquisition occurs most commonly after sexual contact. To establish infection, HIV-1 must infect cells that support high level replication, namely CD4+ T cells, which are absent from the outermost genital epithelium. Dendritic cells (DCs), present in mucosal epithelia, potentially facilitate HIV-1 acquisition. We show that vaginal epithelial DCs, termed CD1a+ VEDCs, are unlike other blood and tissue derived DCs because they express langerin but not DC-SIGN, and unlike skin-based langerin+ DC subset, Langerhans cells (LC), they do not harbor Birbeck granules. Individuals primarily acquire HIV-1 that utilize the CCR5 receptor (termed either R5 or R5X4) during heterosexual transmission, and the mechanism for the block against variants that only use the CXCR4 receptor (classified as X4) remains unclear. We show that X4 as compared to R5 HIV-1 show limited to no replication in CD1a+ VEDCs. This differential replication occurs post-fusion suggesting that receptor usage influences post-entry steps in the virus life-cycle. Furthermore, CD1a+ VEDCs isolated from HIV-1 infected virologically suppressed women harbor HIV-1 DNA. Thus, CD1a+ VEDCs are potentially both infected early during heterosexual transmission and retain virus during treatment. Understanding the interplay between HIV-1 and CD1a+ VEDCs will be important for future prevention and cure strategies.
Victor Pena-Cruz, Luis M. Agosto, Hisashi Akiyama, Alex Olson, Yvetane Moreau, Jean-Robert Larrieux, Andrew Henderson, Suryaram Gummuluru, Manish Sagar
Haemostasis requires conversion of fibrinogen to fibrin fibres that generate a characteristic network, interact with blood cells, and initiate tissue repair. The fibrin network is porous and highly permeable, but the spatial arrangement of the external clot face is unknown. Here we show that fibrin transitioned to the blood-air interface through Langmuir film formation, producing a protective film confining the clot. We demonstrated that only fibrin is required to form the film, and that it occurred in vitro and in vivo. The fibrin film connected to the underlying clot network through tethering fibres. It was digested by plasmin and formation of the film was prevented with surfactants. Functionally, the film retained blood cells and protected against penetration by bacterial pathogens in a murine model of dermal infection. Our data show a remarkable aspect of blood clotting, in which fibrin forms a protective film covering the external surface of the clot, defending the organism against microbial invasion.
Fraser L. Macrae, Cédric Duval, Praveen Papareddy, Stephen R. Baker, Nadira Yuldasheva, Katherine J. Kearney, Helen R. McPherson, Nathan Asquith, Joke Konings, Alessandro Casini, Jay L. Degen, Simon D. Connell, Helen Philippou, Alisa S. Wolberg, Heiko Herwald, Robert A.S. Ariëns
Receptor tyrosine kinases (RTKs) are important drivers of cancers. In addition to genomic alterations, aberrant activation of wild type RTKs plays an important role in driving cancer progression. However, the underlying mechanisms of how RTKs drive prostate cancer remain incompletely characterized. Here we show that non-proteolytic ubiquitination of RTK regulates its kinase activity and contributes to RTK-mediated prostate cancer metastasis. TRAF4, an E3 ubiquitin ligase, is highly expressed in metastatic prostate cancer. We demonstrated here that it is a key player in regulating RTK mediated prostate cancer metastasis. We further identified TrkA, a neurotrophin RTK, as TRAF4-targeted ubiquitination substrate that promotes cancer cell invasion and inhibition of TrkA activity abolished TRAF4-dependent cell invasion. TRAF4 promoted K27 and K29-linked ubiquitination at the TrkA kinase domain and increased its kinase activity. Mutation of TRAF4-targeted ubiquitination sites abolished TrkA tyrosine auto-phosphorylation and its interaction with downstream proteins. TRAF4 knockdown also suppressed NGF-stimulated TrkA downstream p38 MAPK activation and invasion-associated gene expression. Furthermore, elevated TRAF4 levels significantly correlated with increased NGF-stimulated invasion-associated gene expression in prostate cancer patients, indicating that this signaling axis is significantly activated during oncogenesis. Our results revealed a post-translational modification mechanism contributing to aberrant non-mutated RTK activation in cancer cells.
Ramesh Singh, Dileep Karri, Hong Shen, Jiangyong Shao, Subhamoy Dasgupta, Shixia Huang, Dean P. Edwards, Michael M. Ittmann, Bert W. O’Malley, Ping Yi
For gene therapy of gain-of-function autosomal dominant diseases, either correcting or deleting the disease allele is potentially curative. To test whether there may be an advantage of one approach over the other for WHIM (warts, hypogammaglobulinemia, infections and myelokathexis) syndrome — a primary immunodeficiency disorder caused by gain-of-function autosomal dominant mutations in chemokine receptor CXCR4 — we performed competitive transplantation experiments using both lethally irradiated wild-type (Cxcr4+/+) and unconditioned WHIM (Cxcr4+/w) recipient mice. In both models, hematopoietic reconstitution was markedly superior using bone marrow (BM) cells from donors hemizygous for Cxcr4 (Cxcr4+/o) compared with BM cells from Cxcr4+/+ donors. Remarkably, only ~6% Cxcr4+/o hematopoietic stem cell (HSC) chimerism post-transplantation in unconditioned Cxcr4+/w recipient BM supported >70% long-term donor myeloid chimerism in blood and corrected myeloid cell deficiency in blood. Donor Cxcr4+/o HSCs differentiated normally and did not undergo exhaustion as late as 465 days post-transplantation. Thus, disease allele deletion resulting in Cxcr4 haploinsufficiency was superior to disease allele repair in a mouse model of gene therapy for WHIM syndrome, allowing correction of leukopenia without recipient conditioning.
Ji-Liang Gao, Erin Yim, Marie Siwicki, Alexander Yang, Qian Liu, Ari Azani, Albert Owusu-Ansah, David H. McDermott, Philip M. Murphy
The superoxide-generating enzyme Nox2 contributes to hypertension and cardiovascular remodeling triggered by activation of the renin-angiotensin system. Multiple Nox2-expressing cells are implicated in angiotensin II (AngII)-induced pathophysiology, but the importance of Nox2 in leukocyte subsets is poorly understood. Here, we investigated the role of Nox2 in T cells, particularly Tregs. Mice globally deficient in Nox2 displayed increased numbers of Tregs in the heart at baseline whereas AngII-induced T-effector cell (Teffs) infiltration was inhibited. To investigate the role of Treg Nox2, we generated a mouse line with CD4-targeted Nox2 deficiency (Nox2fl/flCD4Cre+). These animals showed inhibition of AngII-induced hypertension and cardiac remodeling related to increased tissue-resident Tregs and reduction in infiltrating Teffs, including Th17 cells. The protection in Nox2fl/flCD4Cre+ mice was reversed by anti-CD25 Ab-depletion of Tregs. Mechanistically, Nox2–/y Tregs showed higher in vitro suppression of Teffs proliferation than WT Tregs, increased nuclear levels of FoxP3 and NF-κB, and enhanced transcription of CD25, CD39, and CD73. Adoptive transfer of Tregs confirmed that Nox2-deficient cells had greater inhibitory effects on AngII-induced heart remodeling than WT cells. These results identify a previously unrecognized role of Nox2 in modulating suppression of Tregs, which acts to enhance hypertension and cardiac remodeling.
Amber Emmerson, Silvia Cellone Trevelin, Heloise Mongue-Din, Pablo D. Becker, Carla Ortiz, Lesley A. Smyth, Qi Peng, Raul Elgueta, Greta Sawyer, Aleksandar Ivetic, Robert I. Lechler, Giovanna Lombardi, Ajay M. Shah
Spinal muscular atrophy (SMA), a degenerative motor neuron (MN) disease caused by loss of functional SMN protein due to SMN1 gene mutations, is a leading cause of infant mortality. Increasing SMN levels ameliorates the disease phenotype and is unanimously accepted as a therapeutic approach for SMA patients. The ubiquitin/proteasome system is known to regulate SMN protein levels; however whether autophagy controls SMN levels remains poorly explored. Here we show that SMN protein is degraded by autophagy. Pharmacological and genetic inhibition of autophagy increase SMN levels, while induction of autophagy decreases SMN. SMN degradation occurs via its interaction with the autophagy adapter p62/SQSTM1. We also show that SMA neurons display reduced autophagosome clearance, increased p62/ubiquitinated protein levels, and hyperactivated mTORC1 signaling. Importantly, reducing p62 levels markedly increases SMN and its binding partner gemin2, promotes MN survival and extends lifespan in fly and mouse SMA models revealing p62 as a new potential therapeutic target to treat SMA.
Natalia Rodriguez-Muela, Andrey Parkhitko, Tobias Grass, Rebecca M. Gibbs, Erika M. Norabuena, Norbert Perrimon, Rajat Singh, Lee L. Rubin
Progression of chronic kidney disease associated with progressive fibrosis and impaired tubular epithelial regeneration is still an unmet biomedical challenge, because once chronic lesions have manifested, no effective therapies are available as of yet for clinical use. Prompted by various studies across multiple organs demonstrating that preconditioning regimens to induce endogenous regenerative mechanisms protect various organs from later incurring acute injuries, we here aimed to gain insights into the molecular mechanisms underlying successful protection and to explore whether such pathways could be utilized to inhibit progression of chronic organ injury. We identified a protective mechanism that is controlled by the transcription factor ARNT, which effectively inhibits progression of chronic kidney injury by transcriptional induction of ALK3, the principal mediator of anti-fibrotic and pro-regenerative BMP signaling responses. We further report that ARNT expression itself is controlled by the FKBP12/YY1 transcriptional repressor complex, and that disruption of such FKBP12/YY1 complexes by picomolar FK506 at sub-immunosuppressive doses increases ARNT expression, subsequently leading to homodimeric ARNT-induced ALK3 transcription. Direct targeting of FKBP12/YY1 with in vivo-morpholino approaches or small molecule inhibitors including GPI-1046 were equally effective to induce ARNT expression with subsequent activation of ALK3-dependent canonical BMP signaling responses and attenuated chronic organ failure in models of chronic kidney, but also cardiac and liver injuries. In summary, we report an organ protective mechanism, which can be pharmacologically modulated by immunophilin ligands FK506, GPI-1046 or therapeutically targeted by in vivo-morpholino approaches.
Björn Tampe, Désirée Tampe, Gunsmaa Nyamsuren, Friederike Klöpper, Gregor Rapp, Anne Kauffels, Thomas Lorf, Elisabeth M. Zeisberg, Gerhard A. Müller, Raghu Kalluri, Samy Hakroush, Michael Zeisberg
Complications of diabetes affect tissues throughout body, including central nervous system. Epidemiological studies show that diabetic patients have increased risk of depression, anxiety, age-related cognitive decline and Alzheimer’s disease. Mice lacking insulin receptor in brain or on hypothalamic neurons display an array of metabolic abnormalities, however, the role of insulin action on astrocytes and neurobehaviors remains less well-studied. Here, we demonstrate that astrocytes are a direct insulin target in the brain and that knockout of IR on astrocytes causes increased anxiety and depressive-like behaviors in mice. This can be reproduced in part by deletion of IR on astrocytes in the nucleus accumbens. At a molecular level, loss of insulin signaling in astrocytes impaired tyrosine phosphorylation of Munc18c. This led to decreased exocytosis of ATP from astrocytes, resulting in decreased purinergic signaling on dopaminergic neurons. These reductions contributed to decreased dopamine release from brain slices. Central administration of ATP analogues could reverse depressive-like behaviors in mice with astrocyte IR knockout. Thus, astrocytic insulin signaling plays an important role in dopaminergic signaling, providing a potential mechanism by which astrocytic insulin action may contribute to increased rates of depression in people with diabetes, obesity and other insulin resistant states.
Weikang Cai, Chang Xue, Masaji Sakaguchi, Masahiro Konishi, Alireza Shirazian, Heather A. Ferris, Mengyao Li, Ruichao Yu, Andre Kleinridders, Emmanuel N. Pothos, C. Ronald Kahn
Synthetic lethality-based strategy has been developed to identify therapeutic targets in cancer harboring tumor suppressor gene mutations, as exemplified by the effectiveness of PARP inhibitors in BRCA1/2-mutated tumors. However, many synthetic lethal interactors are less reliable due to the fact that such genes usually do not perform fundamental or indispensable functions in the cell. Here we developed an approach to identify the “essential lethality” arose from these mutated/deleted essential genes, which are largely tolerated in cancer cells due to genetic redundancy. We uncovered the cohesion subunit SA1 as a putative synthetic-essential target in cancers carrying inactivating mutations of its paralog, SA2. In SA2-deficient Ewing sarcoma and bladder cancer, further depletion of SA1 profoundly and specifically suppressed cancer cell proliferation, survival and tumorigenic potential. Mechanistically, inhibition of SA1 in the SA2-mutated cells led to premature chromatid separation, dramatic extension of mitotic duration, and consequently lethal failure of cell division. More importantly, depletion of SA1 rendered those SA2-mutated cells more susceptible to DNA damage, especially double-strand breaks (DSBs), due to reduced functionality of DNA repair. Furthermore, inhibition of SA1 sensitized the SA2-deficient cancer cells to PARP inhibitors in vitro and in vivo, providing a potential therapeutic strategy for patients with SA2-deficient tumors.
Yunhua Liu, Hanchen Xu, Kevin Van der Jeught, Yujing Li, Sheng Liu, Lu Zhang, Yuanzhang Fang, Xinna Zhang, Milan Rodovich, Bryan P. Schneider, Xiaoming He, Cheng Huang, Chi Zhang, Jun Wan, Guang Ji, Xiongbin Lu
BACKGROUND. Monogenic Interferon (IFN)-mediated autoinflammatory diseases present in infancy with systemic inflammation, an IFN-response-gene-signature (IRS), inflammatory organ damage and high mortality. We used the janus kinase (JAK) inhibitor baricitinib with IFN-blocking activity in vitro, to ameliorate disease. METHODS. Between October 2011 and February 2017, 10 patients with CANDLE (chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures), 4 with SAVI (Stimulator of IFN genes (STING)-associated vasculopathy with onset in infancy), and 4 patients with other interferonopathies were enrolled in an Expanded Access Program. Patients underwent dose-escalation, benefit was assessed by reductions in daily disease symptoms and corticosteroid requirement. Quality-of-life, organ inflammation, changes in IFN-induced biomarkers, and safety were longitudinally assessed. RESULTS. 18 patients were treated for a mean duration of 3.0 years (1.5–4.9 years). The median daily symptom score decreased from 1.3 (IQR 0.93–1.78) to 0.25 (IQR 0.1-0.63) (P < 0.0001). In 14 patients receiving steroids at baseline, daily prednisone doses decreased from 0.44 mg/kg/day (IQR 0.31–1.09) to 0.11 mg/kg/day (IQR 0.02–0.24) (P < 0.01); 5 of 10 CANDLE patients achieved lasting clinical remission. Quality of life, height and bone mineral density Z-scores significantly improved, and IFN biomarkers decreased. Three patients discontinued, two with genetically undefined conditions due to lack of efficacy, and one CANDLE patient due to BK viremia and azotemia. The most common adverse events were upper respiratory infections, gastroenteritis, BK viruria and viremia. CONCLUSION. On baricitinib treatment, clinical manifestations, inflammatory and IFN biomarkers improved in patients with the monogenic interferonopathies, CANDLE, SAVI and 2 other interferonopathies. Monitoring safety and efficacy is important in benefit-risk assessment. TRIAL REGISTRATION. ClinicalTrials.gov NCT01724580 and NCT02974595. FUNDING. NIH, NIAID, NIAMS, NIDDK, NHLBI, NINDS, and the Clinical Center. Baricitinib was provided by Eli Lilly. Eli Lilly is the sponsor of the compassionate use program.
Gina A. Montealegre Sanchez, Adam Reinhardt, Suzanne Ramsey, Helmut Wittkowski, Philip J. Hashkes, Yackov Berkun, Susanne Schalm, Sara Murias, Jason A. Dare, Diane Brown, Deborah L. Stone, Ling Gao, Thomas Klausmeier, Dirk Foell, Adriana A. de Jesus, Dawn C. Chapelle, Hanna Kim, Samantha Dill, Robert Colbert, Laura Failla, Bahar Kost, Michelle O'Brien, James C. Reynolds, Les R. Folio, Katherine R. Calvo, Scott M. Paul, Nargues Weir, Alessandra Brofferio, Ariane Soldatos, Angélique Biancotto, Edward W. Cowen, John G. Digiovanna, Massimo Gadina, Andrew J. Lipton, Colleen Hadigan, Steven M. Holland, Joseph Fontana, Ahmad S. Alawad, Rebecca J. Brown, Kristina I. Rother, Theo Heller, Kristina M. Brooks, Parag Kumar, Stephen R. Brooks, Meryl Waldman, Harsharan K. Singh, Volker Nickeleit, Maria Silk, Apurva Prakash, Jonathan M. Janes, Seza Ozen, Paul G. Wakim, Paul A. Brogan, William L. Macias, Raphaela Goldbach-Mansky
Activation of non-neuronal microglia is thought to play a causal role in spinal processing of neuropathic pain. To specifically investigate microglia-mediated effects in a model of neuropathic pain and overcome methodological limitations of previous approaches exploring microglia function upon nerve injury, we selectively ablated resident microglia by intracerebroventricular (icv) ganciclovir infusion into male CD11b-HSVTK transgenic mice, which was followed by a rapid, complete and persistent (23 weeks) repopulation of the CNS by peripheral myeloid cells. In repopulated mice that underwent sciatic nerve injury, we observed a normal response to mechanical stimuli, but an absence of thermal hypersensitivity ipsilateral to the injured nerve. Furthermore, we found that neuronal expression of calcitonin gene-related peptide (CGRP), which is a marker of neurons essential for heat responses, was diminished in the dorsal horn of the spinal cord in repopulated mice. These findings demonstrate distinct mechanisms for heat and mechanical hypersensitivity, highlighting a crucial contribution of CNS myeloid cells in the facilitation of noxious heat.
Stefanie Kälin, Kelly R. Miller, Roland E. Kälin, Marina Jendrach, Christian Witzel, Frank L. Heppner
Although aberrant Epidermal Growth Factor Receptor (EGFR) signaling is widespread in cancer, EGFR inhibition is effective only in a subset of NSCLC (non-small cell lung cancer) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. Tumor necrosis factor (TNF) is a major mediator of inflammation-induced cancer. We find that a rapid increase in TNF level is a universal adaptive response to EGFR inhibition in NSCLC regardless of EGFR status. EGFR signaling actively suppresses TNF mRNA levels by inducing expression of miR-21 resulting in decreased TNF mRNA stability. Conversely, EGFR inhibition results in loss of miR-21 and increased TNF mRNA stability. In addition, TNF-induced NF-kB activation leads to increased TNF transcription in a feedforward loop. Inhibition of TNF signaling renders EGFRwt expressing NSCLC cell lines and an EGFRwt Patient-Derived Xenograft (PDX) model highly sensitive to EGFR inhibition. In EGFR mutant oncogene-addicted cells, blocking TNF enhances the effectiveness of EGFR inhibition. EGFR plus TNF inhibition is also effective in NSCLC with acquired resistance to EGFR inhibition. We suggest concomitant EGFR and TNF inhibition as a new treatment approach that could be beneficial for a majority of lung cancer patients.
Ke Gong, Gao Guo, David E. Gerber, Boning Gao, Michael Peyton, Chun Huang, John D. Minna, Kimmo J. Hatanpaa, Kemp Kernstine, Ling Cai, Yang Xie, Hong Zhu, Farjana Fattah, Shanrong Zhang, Masaya Takahashi, Bipasha Mukherjee, Sandeep Burma, Jonathan Dowell, Kathryn Dao, Vassiliki A. Papadimitrakopoulou, Victor Olivas, Trever G. Bivona, Dawen Zhao, Amyn A. Habib
In situ cancer vaccines are under active clinical investigation due to their reported ability to eradicate both local and disseminated malignancies. Intratumoral vaccine administration is thought to activate a T cell mediated immune response, which begins in the treated tumor and cascades systemically. We describe a positron emission tomography tracer (64Cu-DOTA-AbOX40) that enabled non-invasive and longitudinal imaging of OX40, a cell surface marker of T cell activation. We report the spatiotemporal dynamics of T cell activation following in situ vaccination with CpG oligodeoxynucleotide, in a dual tumor bearing mouse model. We demonstrate that OX40 imaging could predict tumor responses at day 9 post treatment based on tumor tracer uptake at day 2, with higher accuracy than both anatomical and blood-based measurements. These studies provide key insights into global T cell activation following local CpG treatment and indicate that 64Cu-DOTA-AbOX40 is a promising candidate for monitoring clinical cancer immunotherapy strategies.
Israt S. Alam, Aaron T. Mayer, Idit Sagiv-Barfi, Kezheng Wang, Ophir Vermesh, Debra K. Czerwinski, Emily M. Johnson, Michelle L. James, Ronald Levy, Sanjiv S. Gambhir
In the brain, the ventral hypothalamus (VHT) regulates energy and bone metabolism. Whether this regulation uses the same or different neuronal circuits is unknown. Alteration of AP1 signaling in the VHT increases energy expenditure, glucose utilization, and bone density, yet the specific neurons responsible for each or all of these phenotypes are not identified. Using neuron-specific genetically targeted AP1 alterations as a tool in adult mice, we found that AgRP- or POMC- expressing neurons, predominantly present in the arcuate nucleus (ARC) within the VHT, stimulate whole body energy expenditure, glucose utilization and bone formation and density, although their effects on bone resorption differed. In contrast, AP1 alterations in Steroidogenic factor 1 (SF1)-expressing neurons, present in the ventromedial hypothalamus (VMH), increase energy, but decrease bone density, suggesting that these effects are independent. Altered AP1 signaling also increased the levels of the neuromediator galanin in the hypothalamus and global galanin deletion, VHT galanin silencing using shRNA, or pharmacological galanin receptor blockade, counteracted the observed effects on energy and bone. Thus, AP1 antagonism reveals that AgRP- and POMC- expressing neurons can stimulate body metabolism and increase bone density, with galanin acting as a central downstream effector. The results obtained with SF1-expressing neurons, however, indicate that bone homeostasis is not always dictated by the global energy status, and vice versa.
Anna Idelevich, Kazusa Sato, Kenichi Nagano, Glenn Rowe, Francesca Gori, Roland Baron
Neurofibromatosis type 1 associates with multiple neoplasms and the Schwann cell tumor neurofibroma is the most prevalent. A hallmark feature of neurofibroma is mast cell infiltration which is recruited by chemoattractant stem cell factor (SCF) that has been suggested to sustain neurofibroma tumorigenesis. In this study, using new genetically engineered Scf mice, we decipher the contributions of tumor-derived SCF and mast cells to neurofibroma development. We demonstrate that mast cell infiltration is dependent on SCF from tumor Schwann cells. However, removal of mast cells by depleting this main SCF source only slightly affects neurofibroma progression. Other inflammation signatures show that all neurofibromas are associated with high levels of macrophages regardless of Scf status. These findings suggest an active inflammation in neurofibromas and partly explain why mast cell removal alone is not sufficient to relieve tumor burden in this experimental neurofibroma model. Furthermore, we show that plexiform neurofibromas are highly associated with injury-prone spinal nerves that are close to flexible vertebras. In summary, our study details the role of inflammation in neurofibromagenesis. These data paired with the observed tumor locations indicate that prevention of inflammation, and possibly nerve injury, are therapeutic approaches for neurofibroma prophylaxis and treatment that should be explored.
Chung-Ping Liao, Reid C. Booker, Jean-Philippe Brosseau, Zhiguo Chen, Juan Mo, Edem Tchegnon, Yong Wang, D. Wade Clapp, Lu Q. Le
Thiazolidinediones (TZDs) are PPARγ agonists with potent insulin-sensitizing effects. However, their use has been curtailed by significant adverse effects on weight, bone, heart, and hemodynamic balance. TZDs induce the deacetylation of PPARγ on K268 and K293 to cause the browning of white adipocytes. Here we showed that targeted PPARγ mutations resulting in constitutive deacetylation (K268R/K293R, 2KR) increased energy expenditure, and protected from visceral adiposity and diet-induced obesity by augmenting brown remodeling of white adipose tissues. Strikingly, when 2KR mice were treated with rosiglitazone, they maintained the insulin-sensitizing, glucose-lowering response to TZDs, while displaying little, if any, adverse effects on fat deposition, bone density, fluid retention, and cardiac hypertrophy. Thus, deacetylation appears to fulfill the goal of dissociating the metabolic benefits of PPARγ activation from its adverse effects. Strategies to leverage PPARγ deacetylation may lead to the design of safer, more effective agonists of this nuclear receptor in the treatment of metabolic diseases.
Michael J. Kraakman, Qiongming Liu, Jorge Postigo-Fernandez, Ruiping Ji, Ning Kon, Delfina Larrea, Maria Namwanje, Lihong Fan, Michelle Chan, Estela Area-Gomez, Wenxian Fu, Remi J. Creusot, Li Qiang
Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice, whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans. To overcome these obstacles, we studied human immune system-reconstituted mice (hu-mice) rendered hypercholesterolemic by treatment with AAV8- PCSK9 and a high-fat/high-cholesterol Western-type diet (WD). These mice had a high percentage of human T cells and moderate hypercholesterolemia. Compared with hu-mice having lower plasma cholesterol, the PCSK9-WD mice developed a T cell-mediated inflammatory response in the lung and liver. Human CD4+ and CD8+ T cells bearing an effector memory phenotype were significantly elevated in the blood, spleen, and lungs of PCSK9-WD hu-mice, while splenic and circulating regulatory T cells were reduced. These data show that moderately high plasma cholesterol can disrupt human T cell homeostasis in vivo. This process may not only exacerbate atherosclerosis but also contribute to T cell-mediated inflammatory diseases in the setting of hypercholesterolemia.
Jonathan D. Proto, Amanda C. Doran, Manikandan Subramanian, Hui Wang, Mingyou Zhang, Erdi Sozen, Christina Rymond, George Kuriakose, Vivette D'Agati, Robert Winchester, Megan Sykes, Yong-Guang Yang, Ira Tabas
Despite significant advances in the treatment of multiple myeloma (MM), most patients succumb to disease progression. One of the major immunosuppressive mechanisms that is believed to play a role in myeloma progression, is the expansion of regulatory T-cells (Tregs). In this study, we demonstrate that myeloma cells drive Treg expansion and activation by secreting type-1 interferon (IFN). Blocking IFNAR1 (interferon alpha and beta receptor 1) on Tregs significantly decreases both, myeloma-associated Treg immunosuppressive function and myeloma progression. Using syngeneic transplantable murine myeloma models and bone marrow (BM) aspirates of multiple myeloma patients, we found that Tregs were expanded and activated in the BM microenvironment at early stages of myeloma development. Selective depletion of Tregs led to a complete remission and prolonged survival in mice injected with myeloma cells. Further analysis of the interaction between myeloma cells and Tregs using gene sequencing and enrichment analysis uncovered a feedback loop, wherein myeloma-cell-secreted type-1 IFN induced proliferation and expansion of Tregs. By using IFNAR1-blocking antibody treatment and IFNAR1 knockout Tregs, we demonstrated a significant decrease in myeloma-associated Treg proliferation, which was associated with longer survival of myeloma-injected mice. Our results thus suggest that blocking type-1 IFN signaling represents a potential strategy to target immunosuppressive Treg function in MM.
Yawara Kawano, Oksana Zavidij, Jihye Park, Michele Moschetta, Katsutoshi Kokubun, Tarek H. Mouhieddine, Salomon Manier, Yuji Mishima, Naoka Murakami, Mark Bustoros, Romanos Sklavenitis Pistofidis, Mairead Reidy, Yu J. Shen, Mahshid Rahmat, Pavlo Lukyanchykov, Esilida Sula Karreci, Shokichi Tsukamoto, Jiantao Shi, Satoshi Takagi, Daisy Huynh, Antonio Sacco, Yu-Tzu Tai, Marta Chesi, P. Leif Bergsagel, Aldo M. Roccaro, Jamil Azzi, Irene M. Ghobrial