Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

Articles in this category appear as authors submitted them for publication, prior to copyediting and publication layout.
Systemic silencing of PHD2 causes reversible immune regulatory dysfunction
Physiological effects of cellular hypoxia are sensed by prolyl hydroxylase (PHD) enzymes which regulate HIFs. Genetic interventions on HIF/PHD pathways reveal multiple phenotypes that extend the...
Published June 4, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124099.
View: Text | PDF
Research In-Press Preview Immunology

Systemic silencing of PHD2 causes reversible immune regulatory dysfunction

  • Text
  • PDF
Abstract

Physiological effects of cellular hypoxia are sensed by prolyl hydroxylase (PHD) enzymes which regulate HIFs. Genetic interventions on HIF/PHD pathways reveal multiple phenotypes that extend the known biology of hypoxia. Recent studies unexpectedly implicate HIF in aspects of multiple immune and inflammatory pathways. However such studies are often limited by systemic lethal effects and/or use tissue-specific recombination systems, which are inherently irreversible, un-physiologically restricted and difficult to time. To study these processes better we developed recombinant mice which express tetracycline-regulated shRNAs broadly targeting the main components of the HIF/PHD pathway, permitting timed bi-directional intervention. We have shown that stabilization of HIF levels in adult mice through PHD2 enzyme silencing by RNA interference, or inducible recombination of floxed alleles, results in multi-lineage leukocytosis and features of autoimmunity. This phenotype was rapidly normalized on re-establishment of the hypoxia-sensing machinery when shRNA expression was discontinued. In both situations these effects were mediated principally through the Hif2a isoform. Assessment of cells bearing regulatory T cell markers from these mice revealed defective function and pro-inflammatory effects in vivo. We believe our findings have shown a new role for the PHD2/Hif2a couple in the reversible regulation of T cell and immune activity.

Authors

Atsushi Yamamoto, Joanna Hester, Philip S. Macklin, Kento Kawai, Masateru Uchiyama, Daniel Biggs, Tammie Bishop, Katherine Bull, Xiaotong Cheng, Eleanor Cawthorne, Mathew L. Coleman, Tanya L. Crockford, Ben Davies, Lukas E. Dow, Rob Goldin, Kamil Kranc, Hiromi Kudo, Hannah Lawson, James McAuliffe, Kate Milward, Cheryl L. Scudamore, Elizabeth Soilleux, Fadi Issa, Peter J. Ratcliffe, Chris W. Pugh

×

Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2)
Resistance to immunotherapy is one of the biggest problems of current oncotherapeutics. WhileT cell abundance is essential for tumor responsiveness to immunotherapy, factors that define the T cell...
Published June 4, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127755.
View: Text | PDF
Research In-Press Preview Immunology Oncology

Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2)

  • Text
  • PDF
Abstract

Resistance to immunotherapy is one of the biggest problems of current oncotherapeutics. WhileT cell abundance is essential for tumor responsiveness to immunotherapy, factors that define the T cell inflamed tumor microenvironment are not fully understood. We conducted an unbiased approach to identify tumor-intrinsic mechanisms shaping the immune tumor microenvironment(TME), focusing on pancreatic adenocarcinoma because it is refractory to immunotherapy and excludes T cells from the TME. From human tumors, we identified EPHA2 as a candidate tumor intrinsic driver of immunosuppression. Epha2 deletion reversed T cell exclusion and sensitized tumors to immunotherapy. We found that PTGS2, the gene encoding cyclooxygenase-2, lies downstream of EPHA2 signaling through TGFβ and is associated with poor patient survival. Ptgs2 deletion reversed T cell exclusion and sensitized tumors to immunotherapy; pharmacological inhibition of PTGS2 was similarly effective. Thus, EPHA2-PTGS2 signaling in tumor cells regulates tumor immune phenotypes; blockade may represent a novel therapeutic avenue for immunotherapy-refractory cancers. Our findings warrant clinical trials testing the effectiveness of therapies combining EPHA2-TGFβ-PTGS2 pathway inhibitors with anti-tumor immunotherapy, and may change the treatment of notoriously therapy-resistant pancreatic adenocarcinoma.

Authors

Nune Markosyan, Jinyang Li, Yu H. Sun, Lee P. Richman, Jeffrey H. Lin, Fangxue Yan, Liz Quinones, Yogev Sela, Taiji Yamazoe, Naomi Gordon, John W. Tobias, Katelyn T. Byrne, Andrew J. Rech, Garret A. FitzGerald, Ben Z. Stanger, Robert H. Vonderheide

×

Clinically-approved CFTR modulators rescue Nrf2 dysfunction in cystic fibrosis airway epithelia
Cystic Fibrosis (CF) is a multi-organ progressive genetic disease caused by loss of functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. Previously, we identified a...
Published May 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI96273.
View: Text | PDF
Research In-Press Preview Pulmonology

Clinically-approved CFTR modulators rescue Nrf2 dysfunction in cystic fibrosis airway epithelia

  • Text
  • PDF
Abstract

Cystic Fibrosis (CF) is a multi-organ progressive genetic disease caused by loss of functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. Previously, we identified a significant dysfunction in CF cells and model mice of the transcription factor nuclear-factor-E2-related factor-2 (Nrf2), a major regulator of redox balance and inflammatory signaling. Here we report that approved F508del CFTR correctors VX809/VX661 recover diminished Nrf2 function and colocalization with CFTR in CF human primary bronchial epithelia by proximity ligation assay, immunoprecipitation, and immunofluorescence, concordant with CFTR correction. F508del CFTR correctors induced Nrf2 nuclear translocation, Nrf2-dependent luciferase activity, and transcriptional activation of target genes. Rescue of Nrf2 function by VX809/VX661 was dependent on significant correction of F508del and was blocked by inhibition of corrected channel function, or high-level shRNA knockdown of CFTR or F508del-CFTR. Mechanistically, F508del-CFTR modulation restored Nrf2 phosphorylation and its interaction with the coactivator CBP. Our findings demonstrate that sufficient modulation of F508del CFTR function corrects Nrf2 dysfunction in CF.

Authors

Dana C. Borcherding, Matthew E. Siefert, Songbai Lin, John Brewington, Hesham Sadek, John P. Clancy, Scott M. Plafker, Assem G. Ziady

×

CD161 contributes to prenatal immune suppression of IFNγ-producing PLZF+ T cells
Background: While the human fetal immune system defaults to a program of tolerance, there is concurrent need for protective immunity to meet the antigenic challenges encountered after birth....
Published May 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125957.
View: Text | PDF
Clinical Research and Public Health In-Press Preview Development Immunology

CD161 contributes to prenatal immune suppression of IFNγ-producing PLZF+ T cells

  • Text
  • PDF
Abstract

Background: While the human fetal immune system defaults to a program of tolerance, there is concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown. Methods: We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with pro-inflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared to healthy term controls. Results: We identified a transcriptionally distinct population of CD4+ T cells characterized by expression of the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF). PLZF+ CD4+ T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced pro-inflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFNγ in a fetal-specific manner. IFNγ-producing PLZF+ CD4+ T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation. Conclusion: Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies.

Authors

Joanna Halkias, Elze Rackaityte, Sara L. Hillman, Dvir Aran, Ventura F. Mendoza, Lucy R. Marshall, Tippi C. MacKenzie, Trevor D. Burt

×

Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma
Poroma is a benign skin tumor exhibiting terminal sweat gland duct differentiation. The present study aimed to explore the potential role of gene fusions in the tumorigenesis of poromas. RNA...
Published May 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126185.
View: Text | PDF
Concise Communication In-Press Preview Dermatology Oncology

Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma

  • Text
  • PDF
Abstract

Poroma is a benign skin tumor exhibiting terminal sweat gland duct differentiation. The present study aimed to explore the potential role of gene fusions in the tumorigenesis of poromas. RNA sequencing and reverse transcription PCR identified highly recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poromas (92/104 lesions, 88.5%) and their rare malignant counterpart, porocarcinomas (7/11 lesions, 63.6%). A WWTR1-NUTM1 fusion was identified in a single lesion of poroma. Fluorescent in-situ hybridization confirmed genomic rearrangements involving these genetic loci. Immunohistochemical staining could readily identify the YAP1 fusion products as nuclear expression of the N-terminal portion of YAP1 with a lack of the C-terminal portion. YAP1 and WWTR1, also known as YAP and TAZ, respectively, encode paralogous transcriptional activators of TEAD, which are negatively regulated by the Hippo signaling pathway. The YAP1 and WWTR1 fusions strongly transactivated a TEAD reporter and promoted anchorage-independent growth, confirming their tumorigenic roles. Our results demonstrate the frequent presence of transforming YAP1 fusions in poromas and porocarcinomas and suggest YAP1/TEAD-dependent transcription as a candidate therapeutic target against porocarcinoma.

Authors

Shigeki Sekine, Tohru Kiyono, Eijitsu Ryo, Reiko Ogawa, Susumu Wakai, Hitoshi Ichikawa, Koyu Suzuki, Satoru Arai, Koji Tsuta, Mitsuaki Ishida, Yuko Sasajima, Naoki Goshima, Naoya Yamazaki, Taisuke Mori

×

Fra-2-expressing macrophages promote lung fibrosis in mice
Idiopathic Pulmonary Fibrosis (IPF) is a deadly disease with limited therapies. Tissue fibrosis is associated with Type 2 immune response, although the causal contribution of immune cells is not...
Published May 28, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125366.
View: Text | PDF
Research In-Press Preview Inflammation Pulmonology

Fra-2-expressing macrophages promote lung fibrosis in mice

  • Text
  • PDF
Abstract

Idiopathic Pulmonary Fibrosis (IPF) is a deadly disease with limited therapies. Tissue fibrosis is associated with Type 2 immune response, although the causal contribution of immune cells is not defined. The AP-1 transcription factor Fra-2 is upregulated in IPF lung sections and Fra-2 transgenic mice (Fra-2tg) exhibit spontaneous lung fibrosis. Here we show that Bleomycin-induced lung fibrosis is attenuated upon myeloid-inactivation of Fra-2 and aggravated in Fra-2tg bone marrow chimeras. Type VI collagen (ColVI), a Fra-2 transcriptional target, is up-regulated in three lung fibrosis models, and macrophages promote myofibroblast activation in vitro in a ColVI- and Fra-2-dependent manner. Fra-2 or ColVI inactivation does not affect macrophage recruitment and alternative activation, suggesting that Fra-2/ColVI specifically controls the paracrine pro-fibrotic activity of macrophages. Importantly, ColVI knock-out mice (KO) and ColVI-KO bone marrow chimeras are protected from Bleomycin-induced lung fibrosis. Therapeutic administration of a Fra-2/AP-1 inhibitor reduces ColVI expression and ameliorates fibrosis in Fra-2tg mice and in the Bleomycin model. Finally, Fra-2 and ColVI positively correlate in IPF patient samples and co-localize in lung macrophages. Therefore, the Fra-2/ColVI pro-fibrotic axis is a promising biomarker and therapeutic target for lung fibrosis, and possibly other fibrotic diseases.

Authors

Alvaro C. Ucero, Latifa Bakiri, Ben Roediger, Masakatsu Suzuki, Maria Jimenez, Pratyusha Mandal, Paola Braghetta, Paolo Bonaldo, Luis Paz-Ares, Coral Fustero-Torre, Pilar Ximenez-Embun, Ana Isabel Hernandez, Diego Megias, Erwin F. Wagner

×

RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass
Receptor activator of Nfkb ligand (RANKL) activates, while osteoprotegerin (OPG) inhibits, osteoclastogenesis. In turn a neutralizing Ab against RANKL, denosumab improves bone strength in...
Published May 23, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125915.
View: Text | PDF | Corrigendum | Corrigendum
Research In-Press Preview Bone biology Muscle biology

RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass

  • Text
  • PDF
Abstract

Receptor activator of Nfkb ligand (RANKL) activates, while osteoprotegerin (OPG) inhibits, osteoclastogenesis. In turn a neutralizing Ab against RANKL, denosumab improves bone strength in osteoporosis. OPG also improves muscle strength in mouse models of Duchenne’s muscular dystrophy (mdx) and denervation-induce atrophy, but its role and mechanisms of action on muscle weakness in other conditions remains to be investigated. We investigated the effects of RANKL inhibitors on muscle in osteoporotic women and mice that either overexpress RANKL (HuRANKL-Tg+), or lack Pparb and concomitantly develop sarcopenia (Pparb-/-). In women, denosumab over 3 years improved appendicular lean mass and handgrip strength compared to no treatment, whereas bisphosphonate did not. HuRANKL-Tg+ mice displayed lower limb force and maximal speed, while their leg muscle mass was diminished, with a lower number of type I and II fibers. Both OPG and denosumab increased limb force proportionally to the increase in muscle mass. They markedly improved muscle insulin sensitivity and glucose uptake, and decrease anti-myogenic and inflammatory gene expression in muscle, such as myostatin and protein tyrosine phosphatase receptor-γ. Similarly, in Pparb-/-, OPG increased muscle volume and force, while also normalizing their insulin signaling and higher expression of inflammatory genes in skeletal muscle. In conclusions, RANKL deteriorates, while its inhibitor improves, muscle strength and insulin sensitivity in osteoporotic mice and humans. Hence denosumab could represent a novel therapeutic approach for sarcopenia.

Authors

Nicolas Bonnet, Lucie Bourgoin, Emmanuel Biver, Eleni Douni, Serge Ferrari

×

Cathepsin K-deficient osteocytes prevent lactation-induced bone loss and parathyroid hormone suppression
Lactation induces bone loss to provide sufficient calcium in the milk, a process that involves osteoclastic bone resorption but also osteocytes and perilacunar resorption. The exact mechanisms by...
Published May 21, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122936.
View: Text | PDF
Research In-Press Preview Bone biology Endocrinology

Cathepsin K-deficient osteocytes prevent lactation-induced bone loss and parathyroid hormone suppression

  • Text
  • PDF
Abstract

Lactation induces bone loss to provide sufficient calcium in the milk, a process that involves osteoclastic bone resorption but also osteocytes and perilacunar resorption. The exact mechanisms by which osteocytes contribute to bone loss remain elusive. Osteocytes express genes required in osteoclasts for bone resorption, including cathepsin K (Ctsk), and lactation elevates their expression. We show that Ctsk deletion in osteocytes prevented the increase in osteocyte lacunar area seen during lactation, as well as the effects of lactation to increase osteoclast numbers and decrease trabecular bone volume, cortical thickness and mechanical properties. In addition, Ctsk deletion in osteocytes increased bone Parathyroid Hormone related Peptide (PTHrP), prevented the decrease in serum Parathyroid Hormone (PTH) induced by lactation, but amplified the increase in serum 1,25(OH)2D. The net result of these changes is to maintain serum and milk calcium levels in the normal range, ensuring normal offspring skeletal development. Our studies confirm the fundamental role of osteocytic perilacunar remodeling in physiological states of lactation and provides genetic evidence that osteocyte-derived Ctsk contributes not only to osteocyte perilacunar remodeling, but also to the regulation of PTH, PTHrP, 1,25-Dyhydroxyvitamin D (1,25(OH)2D), osteoclastogenesis and bone loss in response to the high calcium demand associated with lactation.

Authors

Sutada Lotinun, Yoshihito Ishihara, Kenichi Nagano, Riku Kiviranta, Vincent Carpentier, Lynn Neff, Virginia Parkman, Noriko Ide, Dorothy Hu, Pamela Dann, Daniel Brooks, Mary L. Bouxsein, John Wysolmerski, Francesca Gori, Roland Baron

×

Membralin deficiency dysregulates astrocytic glutamate homeostasis leading to ALS-like impairment
Mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) are yet unclear. Specific deletion of the ER-component membralin in astrocytes manifested postnatal motor...
Published May 21, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127695.
View: Text | PDF
Research In-Press Preview Cell biology Neuroscience

Membralin deficiency dysregulates astrocytic glutamate homeostasis leading to ALS-like impairment

  • Text
  • PDF
Abstract

Mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) are yet unclear. Specific deletion of the ER-component membralin in astrocytes manifested postnatal motor defects and lethality in mice, causing the accumulation of extracellular glutamate through reducing the glutamate transporter EAAT2. Restoring EAAT2 levels in membralin KO astrocytes limited astrocyte-dependent excitotoxicity in motor neurons. Transcriptomic profiles from mouse astrocytic membralin KO motor cortex indicated significant perturbation in KEGG pathway components related to ALS, including downregulation of Eaat2 and upregulation of Tnfrsf1a. Changes in gene expression with membralin deletion also overlapped with mouse ALS models and reactive astrocytes. Our results shown that activation of TNF receptor (TNFR1)-NFκB pathway known to suppress Eaat2 transcription was upregulated with membralin deletion. Further, reduced membralin and EAAT2 levels correlated with disease progression in spinal cord from SOD1-mutant mouse models, and reductions in membralin/EAAT2 were observed in human ALS spinal cord. Importantly, overexpression of membralin in SOD1G93A astrocytes decreased TNFR1 levels and increased EAAT2 expression, and improved motor neuron survival. Importantly, upregulation of membralin in SOD1G93A mice significantly prolonged mouse survival. Together, our study provided a mechanism for ALS pathogenesis where membralin limited glutamatergic neurotoxicity, suggesting that modulating membralin had potentials in ALS therapy.

Authors

Lu-Lin Jiang, Bing Zhu, Yingjun Zhao, Xiaoguang Li, Tongfei Liu, Juan Pina-Crespo, Lisa Zhou, Wenxi Xu, Maria J. Rodriguez, Haiyang Yu, Don W. Cleveland, John Ravits, Sandrine Da Cruz, Tao Long, Timothy Y. Huang, Huaxi Xu

×

The antibiotic clofoctol suppresses glioma stem cell proliferation by activating KLF13
Gliomas account for approximately 80% of primary malignant tumors in the central nervous system. Despite aggressive therapy, the prognosis of patients remains extremely poor. Glioma stem cells...
Published May 21, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124979.
View: Text | PDF
Research In-Press Preview Oncology

The antibiotic clofoctol suppresses glioma stem cell proliferation by activating KLF13

  • Text
  • PDF
Abstract

Gliomas account for approximately 80% of primary malignant tumors in the central nervous system. Despite aggressive therapy, the prognosis of patients remains extremely poor. Glioma stem cells (GSCs) which considered as the potential target of therapy for their crucial role in therapeutic resistance and tumor recurrence, are believed to be key factors for the disappointing outcome. Here, we took advantage of GSCs as the cell model to perform high-throughput drug screening and the old antibiotic, clofoctol, was identified as the most effective compound, showing reduction of colony-formation and induction of apoptosis of GSCs. Moreover, growth of tumors was inhibited obviously in vivo after clofoctol treatment especially in primary patient-derived xenografts (PDXs) and transgenic xenografts. The anticancer mechanisms demonstrated by analyzing related downstream genes and discovering the targeted binding protein revealed that clofoctol exhibited the inhibition of GSCs by upregulation of Kruppel-like factor 13 (KLF13), a tumor suppressor gene, through clofoctol’s targeted binding protein, Upstream of N-ras (UNR). Collectively, these data demonstrated that induction of KLF13 expression suppressed growth of gliomas and provided a potential therapy for gliomas targeting GSCs. Importantly, our results also identified the RNA-binding protein UNR as a drug target.

Authors

Yan Hu, Meilian Zhang, Ningyu Tian, Dengke Li, Fan Wu, Peishan Hu, Zhixing Wang, Liping Wang, Wei Hao, Jingting Kang, Bin Yin, Zhi Zheng, Tao Jiang, Jiangang Yuan, Boqin Qiang, Wei Han, Xiaozhong Peng

×

High multiplicity infection following transplantation of hepatitis C virus-positive organs
Highly effective direct-acting antivirals against Hepatitis C virus (HCV) have created an opportunity to transplant organs from HCV-positive individuals into HCV-negative recipients, since de novo...
Published May 21, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127203.
View: Text | PDF
Concise Communication In-Press Preview Virology

High multiplicity infection following transplantation of hepatitis C virus-positive organs

  • Text
  • PDF
Abstract

Highly effective direct-acting antivirals against Hepatitis C virus (HCV) have created an opportunity to transplant organs from HCV-positive individuals into HCV-negative recipients, since de novo infection can be routinely cured. As this procedure is performed more widely, it becomes increasingly important to understand the biological underpinnings of virus transmission, especially the multiplicity of infection. Here, we used single genome sequencing of plasma virus in four genotype 1a HCV-positive organ donors and their seven organ recipients to assess the genetic bottleneck associated with HCV transmission following renal and cardiac transplantation. In all recipients, de novo infection was established by multiple genetically distinct viruses that reflect the full phylogenetic spectrum of replication-competent virus circulating in donor plasma. This was true in renal and cardiac transplantation and in recipients with peak viral loads ranging between 2.9 and 6.6 log10 IU/mL. The permissive transmission process characterized here contrasts sharply with sexual or injection-related transmission, which occurs less frequently per exposure and is generally associated with a stringent genetic bottleneck. These findings highlight the effectiveness of current anti-HCV regimens, while raising caution regarding the substantially higher multiplicity of infection seen in organ transplantation-associated HCV acquisition.

Authors

Muhammad N. Zahid, Shuyi Wang, Gerald H. Learn, Peter L. Abt, Emily A. Blumberg, Peter P. Reese, David S. Goldberg, George M. Shaw, Katharine J. Bar

×

Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis
The migration of leukocytes into the CNS drives the neuropathology of multiple sclerosis (MS). This penetration likely utilizes energy resources that remain to be defined. Using the experimental...
Published May 21, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124012.
View: Text | PDF
Research In-Press Preview Autoimmunity Metabolism

Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis

  • Text
  • PDF
Abstract

The migration of leukocytes into the CNS drives the neuropathology of multiple sclerosis (MS). This penetration likely utilizes energy resources that remain to be defined. Using the experimental autoimmune encephalomyelitis (EAE) model of MS, we determined that macrophages within the perivascular cuff of post-capillary venules are highly glycolytic as manifested by strong expression of lactate dehydrogenase A (LDHA) that converts pyruvate to lactate. These macrophages expressed prominent levels of monocarboxylate transporter-4 (MCT-4) specialized in secreting lactate from glycolytic cells. The functional relevance of glycolysis was confirmed by siRNA-mediated knockdown of LDHA and MCT-4, which decreased lactate secretion and macrophage transmigration. MCT-4 was in turn regulated by EMMPRIN (CD147) as determined through co-expression/co-immunoprecipitation studies, and siRNA-mediated EMMPRIN silencing. The functional relevance of MCT-4/EMMPRIN interaction was affirmed by lower macrophage transmigration in culture using the MCT-4 inhibitor, α-cyano-4-hydroxy-cinnamic acid (CHCA), a cinnamon derivative. CHCA also reduced leukocyte infiltration and the clinical severity of EAE. Relevance to MS was corroborated by the strong expression of MCT-4, EMMPRIN and LDHA in perivascular macrophages in MS brains. These results detail the metabolism of macrophages for transmigration from perivascular cuffs into the CNS parenchyma and identifies CHCA and diet as potential modulators of neuro-inflammation in MS.

Authors

Deepak Kumar Kaushik, Anindita Bhattacharya, Reza Mirzaei, Khalil S. Rawji, Younghee Ahn, Jong M. Rho, V. Wee Yong

×

Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer
The presence of tumor-infiltrating T cells is associated with favorable patient outcomes, yet most pancreatic cancers are immunologically silent and resistant to currently available...
Published May 21, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123540.
View: Text | PDF
Research In-Press Preview Oncology

Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer

  • Text
  • PDF
Abstract

The presence of tumor-infiltrating T cells is associated with favorable patient outcomes, yet most pancreatic cancers are immunologically silent and resistant to currently available immunotherapies. Here we show using a syngeneic orthotopic implantation model of pancreatic cancer that Pik3ca regulates tumor immunogenicity. Genetic silencing of Pik3ca in KrasG12D/Trp53R172H-driven pancreatic tumors resulted in infiltration of T cells, complete tumor regression, and 100% survival of immunocompetent host mice. By contrast, Pik3ca-null tumors implanted in T cell-deficient mice progressed and killed all of the animals. Adoptive transfer of tumor antigen-experienced T cells eliminated Pik3ca-null tumors in immunodeficient mice. Loss of PIK3CA or inhibition of its effector, AKT, increased the expression of MHC Class I and CD80 on tumor cells. These changes contributed to the increased susceptibility of Pik3ca-null tumors to T cell surveillance. Our results indicate that tumor cell PIK3CA-AKT signaling limits T cell recognition and clearance of pancreatic cancer cells. Strategies that target this pathway may yield an effective immunotherapy for this cancer.

Authors

Nithya Sivaram, Patrick A. McLaughlin, Han V. Han, Oleksi Petrenko, Ya-Ping Jiang, Lisa M. Ballou, Kien Pham, Chen Liu, Adrianus W.M. van der Velden, Richard Z. Lin

×

The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy
PD-L1 is a promising therapeutic target in aggressive cancers. However, immune landscapes and cancer hallmarks of human PD-L1+ tumors, as well as their roles in determining therapeutic efficacies...
Published May 21, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127726.
View: Text | PDF
Research In-Press Preview Immunology Inflammation

The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy

  • Text
  • PDF
Abstract

PD-L1 is a promising therapeutic target in aggressive cancers. However, immune landscapes and cancer hallmarks of human PD-L1+ tumors, as well as their roles in determining therapeutic efficacies are unknown. Here we identified, in detailed studies of gene data regarding 9769 patients of 32 types of human cancers, that PD-L1 could not exclusively represent IFN-γ signature and potentially signified pro-inflammatory myeloid responses in a tumor. PD-L1 heterogeneity endowed by local immune landscapes controlled cancer hallmarks and clinical outcomes of patients. Mechanically, NF-κB signal elicited by macrophage inflammatory responses generated PD-L1+ cancer cells exhibiting capabilities to aggressively survive, support angiogenesis, and metastasize, whereas STAT1 signal triggered by activated T cells induced PD-L1+ cancer cells susceptive to apoptosis. Importantly, PD-L1+ cancer cells generated by macrophages established great resistance to conventional chemotherapy, cytotoxicity of tumor-specific effector T cells, and therapy of immune checkpoint blockade. Therapeutic strategy combining immune checkpoint blockade with macrophage depletion or NF-κB inhibition in vivo effectively and successfully elicited caner regression. Our results provide insight into the functional features of PD-L1+ tumors and suggest that strategies to influence functional activities of inflammatory cells may benefit immune checkpoint blockade therapy.

Authors

Yuan Wei, Qiyi Zhao, Zhiliang Gao, Xiang-Ming Lao, Wei-Ming Lin, Dong-Ping Chen, Ming Mu, Chun-Xiang Huang, Zheng-Yu Liu, Bo Li, Limin Zheng, Dong-Ming Kuang

×

Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors
The precise regulation of synaptic dopamine (DA) content by the dopamine transporter (DAT) ensures the phasic nature of the DA signal, which underlies the ability of DA to encode reward prediction...
Published May 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127411.
View: Text | PDF
Research In-Press Preview Neuroscience

Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors

  • Text
  • PDF
Abstract

The precise regulation of synaptic dopamine (DA) content by the dopamine transporter (DAT) ensures the phasic nature of the DA signal, which underlies the ability of DA to encode reward prediction error, thereby driving motivation, attention, and behavioral learning. Disruptions to the DA system are implicated in a number of neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD) and, more recently, Autism Spectrum Disorder (ASD). An ASD-associated de novo mutation in the SLC6A3 gene resulting in a threonine to methionine substitution at site 356 (DAT T356M) was recently identified and has been shown to drive persistent reverse transport of DA (i.e. anomalous DA efflux) in transfected cells and to drive hyperlocomotion in Drosophila melanogaster. A corresponding mutation in the leucine transporter, a DAT-homologous transporter, promotes an outward-facing transporter conformation upon substrate binding, a conformation possibly underlying anomalous dopamine efflux. Here we investigated in vivo the impact of this ASD-associated mutation on DA signaling and ASD-associated behaviors. We found that mice homozygous for this mutation display impaired striatal DA neurotransmission and altered DA-dependent behaviors that correspond with some of the behavioral phenotypes observed in ASD.

Authors

Gabriella E. DiCarlo, Jenny I. Aguilar, Heinrich J.G. Matthies, Fiona E. Harrison, Kyle E. Bundschuh, Alyssa West, Parastoo Hashemi, Freja Herborg, Mattias Rickhag, Hao Chen, Ulrik Gether, Mark T. Wallace, Aurelio Galli

×

Imbalanced mitochondrial function provokes heterotaxy via aberrant ciliogenesis
About 1% of all newborns are affected by congenital heart disease (CHD). Recent findings identify aberrantly functioning cilia as a possible source for CHD. Faulty cilia also prevent the...
Published May 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI98890.
View: Text | PDF
Research In-Press Preview Cardiology Development

Imbalanced mitochondrial function provokes heterotaxy via aberrant ciliogenesis

  • Text
  • PDF
Abstract

About 1% of all newborns are affected by congenital heart disease (CHD). Recent findings identify aberrantly functioning cilia as a possible source for CHD. Faulty cilia also prevent the development of proper left-right asymmetry and cause heterotaxy, the incorrect placement of visceral organs. Intriguingly, signaling cascades such as mTor that influence mitochondrial biogenesis also affect ciliogenesis, and can cause heterotaxy-like phenotypes in zebrafish. Here, we identify levels of mitochondrial function as a determinant for ciliogenesis and a cause for heterotaxy. We detected reduced mitochondrial DNA content in biopsies of heterotaxy patients. Manipulation of mitochondrial function revealed a reciprocal influence on ciliogenesis and affected cilia-dependent processes in zebrafish, human fibroblasts and Tetrahymena thermophila. Exome analysis of heterotaxy patients revealed an increased burden of rare damaging variants in mitochondria-associated genes as compared to 1000 Genome controls. Knockdown of such candidate genes caused cilia elongation and ciliopathy-like phenotypes in zebrafish, which could not be rescued by RNA encoding damaging rare variants identified in heterotaxy patients. Our findings suggest that ciliogenesis is coupled to the abundance and function of mitochondria. Our data further reveal disturbed mitochondrial function as an underlying cause for heterotaxy-linked CHD and provide a mechanism for unexplained phenotypes of mitochondrial disease.

Authors

Martin D. Burkhalter, Arthi Sridhar, Pedro Sampaio, Raquel Jacinto, Martina S. Burczyk, Cornelia Donow, Max Angenendt, Competence Network for Congenital Heart Defects Investigators, Maja Hempel, Paul Walther, Petra Pennekamp, Heymut Omran, Susana S. Lopes, Stephanie M. Ware, Melanie Philipp

×

Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells
Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating...
Published May 14, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124738.
View: Text | PDF
Research In-Press Preview

Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells

  • Text
  • PDF
Abstract

Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating factor (G-CSF) as the most common regimen used for HSPC mobilization. The CXCR4 inhibitor, plerixafor, is a more rapid mobilizer, yet not potent enough when used as a single agent, thus emphasizing the need for faster acting agents with more predictable mobilization responses and fewer side effects. We sought to improve hematopoietic stem cell transplantation by developing a new mobilization strategy in mice through combined targeting of the chemokine receptor CXCR2 and the very late antigen 4 (VLA4) integrin. Rapid and synergistic mobilization of HSPCs along with an enhanced recruitment of true HSCs was achieved when a CXCR2 agonist was co-administered in conjunction with a VLA4 inhibitor. Mechanistic studies revealed involvement of CXCR2 expressed on BM stroma in addition to stimulation of the receptor on granulocytes in the regulation of HSPC localization and egress. Given the rapid kinetics and potency of HSPC mobilization provided by the VLA4 inhibitor and CXCR2 agonist combination in mice compared to currently approved HSPC mobilization methods, it represents an exciting potential strategy for clinical development in the future.

Authors

Darja Karpova, Michael P. Rettig, Julie Ritchey, Daniel Cancilla, Stephanie Christ, Leah Gehrs, Ezhilarasi Chendamarai, Moses O. Evbuomwan, Matthew Holt, Jingzhu Zhang, Grazia Abou-Ezzi, Hamza Celik, Eliza Wiercinska, Wei Yang, Feng Gao, Linda G. Eissenberg, Richard F. Heier, Stacy D. Arnett, Marvin J. Meyers, Michael J. Prinsen, David W. Griggs, Andreas Trumpp, Peter G. Ruminski, Dwight M. Morrow, Halvard B. Bonig, Daniel C. Link, John F. DiPersio

×

Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice
Phosphorylation of Dynamin-related protein1 (Drp1) represents an important regulatory mechanism for mitochondrial fission. Here we established the role of Drp1 Serine 600 (S600) phosphorylation on...
Published May 7, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127277.
View: Text | PDF
Research In-Press Preview Metabolism Nephrology

Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice

  • Text
  • PDF
Abstract

Phosphorylation of Dynamin-related protein1 (Drp1) represents an important regulatory mechanism for mitochondrial fission. Here we established the role of Drp1 Serine 600 (S600) phosphorylation on mitochondrial fission in vivo, and assessed the functional consequences of targeted elimination of the Drp1S600 phosphorylation site in progression of diabetic nephropathy (DN). We generated a knockin mouse in which S600 was mutated to alanine (Drp1S600A). We found that diabetic Drp1S600A mice exhibited improved biochemical and histological features of DN along with reduced mitochondrial fission and diminished mitochondrial ROS in vivo. Importantly, we observed that the effect of Drp1S600 phosphorylation on mitochondrial fission in the diabetic milieu was stimulus- but not cell type-dependent. Mechanistically, we showed that mitochondrial fission in high glucose conditions occurs through concomitant binding of phospho-Drp1S600 with mitochondrial fission factor (Mff) and actin-related protein 3 (Arp3), ultimately leading to accumulation of F-actin and Drp1 on the mitochondria. Taken together, these findings establish that a single phosphorylation site in Drp1 can regulate mitochondrial fission and progression of DN in vivo, and highlight the stimulus-specific consequences of Drp1S600 phosphorylation on mitochondrial dynamics.

Authors

Daniel L. Galvan, Jianyin Long, Nathanael Green, Benny H. Chang, Jamie S. Lin, Paul T. Schumacker, Luan D. Truong, Paul Overbeek, Farhad R. Danesh

×

Thioredoxin-1 confines T cell alloresponse and pathogenicity in graft-versus-host disease
Oxidative stress is elevated in the recipients of allogeneic hematopoietic transplantation (allo-HCT) and likely contributes to the development of graft-versus-host disease (GVHD). GVHD is...
Published May 2, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122899.
View: Text | PDF
Research In-Press Preview Immunology

Thioredoxin-1 confines T cell alloresponse and pathogenicity in graft-versus-host disease

  • Text
  • PDF
Abstract

Oxidative stress is elevated in the recipients of allogeneic hematopoietic transplantation (allo-HCT) and likely contributes to the development of graft-versus-host disease (GVHD). GVHD is characterized by activation, expansion, cytokine production and migration of alloreactive donor T cells, and remains a major cause of morbidity and mortality after allo-HCT. Hence, strategies to limit oxidative stress in GVHD are highly desirable. Thioredoxin1 (Trx1) counteracts oxidative stress by scavenging reactive oxygen species (ROS) and regulating other enzymes that metabolize H2O2. The present study sought to elucidate the role of Trx1 in the pathophysiology of GVHD. Using murine and xenograft models of allogeneic bone marrow transplantation (allo-BMT) and genetic (human Trx1-transgenic, Trx1-Tg) as well as pharmacologic (human recombinant Trx1, RTrx1) strategies; we found that Trx1-Tg donor T cells or administration of the recipients with RTrx1 significantly reduced GVHD severity. Mechanistically, we observed RTrx1 reduced ROS accumulation and cytokine production of mouse and human T cells in response to alloantigen stimulation in vitro. In allo-BMT settings, we found that Trx1-Tg or RTrx1 decreased downstream signaling molecules including NFκB activation and T-bet expression, and reduced proliferation, IFN-γ production and ROS accumulation in donor T cells within GVHD target organs. More importantly, administration of RTrx1 did not impair the graft-versus-leukemia (GVL) effect. Taken together, the current work provides a strong rationale and demonstrates feasibility to target the ROS pathway, which can be readily translated into clinic.

Authors

M. Hanief Sofi, Yongxia Wu, Steven D. Schutt, Min Dai, Anusara Daenthanasanmak, Jessica Heinrichs Voss, Hung Nguyen, David Bastian, Supinya Iamsawat, Shanmugam Panneer Selvam, Chen Liu, Nilanjana Maulik, Besim Ogretmen, Junfei Jin, Shikhar Mehrotra, Xue-Zhong Yu

×

Aberrant splicing contributes to severe α-spectrin-linked congenital hemolytic anemia
The etiology of severe hemolytic anemia in most patients with recessive hereditary spherocytosis (rHS) and the related disorder hereditary pyropoikilocytosis (HPP) is unknown. Whole exome...
Published April 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127195.
View: Text | PDF
Research In-Press Preview Genetics Hematology

Aberrant splicing contributes to severe α-spectrin-linked congenital hemolytic anemia

  • Text
  • PDF
Abstract

The etiology of severe hemolytic anemia in most patients with recessive hereditary spherocytosis (rHS) and the related disorder hereditary pyropoikilocytosis (HPP) is unknown. Whole exome sequencing of DNA from probands of 24 rHS or HPP kindreds identified numerous mutations in erythrocyte membrane α-spectrin (SPTA1). Twenty-eight mutations were novel, with null alleles frequently found in trans to missense mutations. No mutations were identified in a third of SPTA1 alleles (17/48). Whole genome sequencing revealed linkage disequilibrium between the common rHS-linked α-spectrinBug Hill polymorphism and a rare intron 30 variant in all 17 mutation-negative alleles. In vitro minigene studies and in vivo splicing analyses revealed the intron 30 variant changes a weak alternate branch point (BP) to a strong BP. This change leads to increased utilization of an alternate 3′ splice acceptor site, perturbing normal α-spectrin mRNA splicing and creating an elongated mRNA transcript. In vivo mRNA stability studies revealed the newly created termination codon in the elongated transcript activates nonsense mediated decay leading to spectrin deficiency. These results demonstrate a unique mechanism of human genetic disease contributes to the etiology of a third of cases of rHS, facilitating diagnosis and treatment of severe anemia, and identifying a new target for therapeutic manipulation.

Authors

Patrick G. Gallagher, Yelena Maksimova, Kimberly Lezon-Geyda, Peter E. Newburger, Desiree Medeiros, Robin D. Hanson, Jennifer A. Rothman, Sara J. Israels, Donna A. Wall, Robert F. Sidonio Jr., Colin Sieff, L. Kate Gowans, Nupur Mittal, Roland Rivera-Santiago, David W. Speicher, Susan J. Baserga, Vincent P. Schulz

×

← Previous 1 2 … 96 97 98 … 109 110 Next →


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts