Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

Articles in this category appear as authors submitted them for publication, prior to copyediting and publication layout.
Super-enhancer-driven EFNA1 fuels tumor progression in cervical cancer via the FOSL2-Src/AKT/STAT3 axis
Super-enhancers (SEs) are expansive cis-regulatory elements known for amplifying oncogene expression across various cancers. However, their role in cervical cancer (CC), a remarkable global...
View: Text | PDF
Research In-Press Preview Cell biology Oncology

Super-enhancer-driven EFNA1 fuels tumor progression in cervical cancer via the FOSL2-Src/AKT/STAT3 axis

  • Text
  • PDF
Abstract

Super-enhancers (SEs) are expansive cis-regulatory elements known for amplifying oncogene expression across various cancers. However, their role in cervical cancer (CC), a remarkable global malignancy affecting women, remains underexplored. Here we applied integrated epigenomic and transcriptomic profiling to delineate the distinct SE landscape in CC by analyzing paired tumor and normal tissues. Our study identifies a tumor-specific SE at the EFNA1 locus that drives EFNA1 expression in CC. Mechanically, the EFNA1 SE region contains consensus sequences for the transcription factor FOSL2, whose knockdown markedly suppressed luciferase activity and diminished H3K27ac enrichment within the SE region. Functional analyses further underlined EFNA1’s oncogenic role in CC, linking its overexpression to poor patient outcomes. EFNA1 knockdown strikingly reduced CC cell proliferation, migration, and tumor growth. Moreover, EFNA1 cis-interacted with its receptor EphA2, leading to decreased EphA2 tyrosine phosphorylation and subsequent activation of the Src/AKT/STAT3 forward signaling pathway. Inhibition of this pathway with specific inhibitors substantially attenuated the tumorigenic capacity of EFNA1-overexpressing CC cells in both in vitro and in vivo models. Collectively, our study unveils the critical role of SEs in promoting tumor progression through the FOSL2-EFNA1-EphA2-Src/AKT/STAT3 axis, providing new prognostic and therapeutic avenues for CC patients.

Authors

Shu-Qiang Liu, Xi-Xi Cheng, Shuai He, Tao Xia, Yi-Qi Li, Wan Peng, Ya-Qing Zhou, Zi-Hao Xu, Mi-Si He, Yang Liu, Pan-Pan Wei, Song-Hua Yuan, Chang Liu, Shu-Lan Sun, Dong-Ling Zou, Min Zheng, Chun-Yan Lan, Chun-Ling Luo, Jin-Xin Bei

×

Aberrant ERK signaling in astrocytes impairs learning and memory in RASopathy-associated BRAF mutant mouse models
RAS/MAPK pathway mutations often induce RASopathies with overlapping features, such as craniofacial dysmorphology, cardiovascular defects, dermatologic abnormalities, and intellectual disabilities....
View: Text | PDF
Research In-Press Preview Development Neuroscience

Aberrant ERK signaling in astrocytes impairs learning and memory in RASopathy-associated BRAF mutant mouse models

  • Text
  • PDF
Abstract

RAS/MAPK pathway mutations often induce RASopathies with overlapping features, such as craniofacial dysmorphology, cardiovascular defects, dermatologic abnormalities, and intellectual disabilities. Although BRAF gene mutations are associated with cardio-facio-cutaneous (CFC) syndrome and Noonan syndrome, it remains unclear how these mutations impair cognition. Here, we investigated the underlying neural mechanisms using several mouse models harboring a gain-of-function BRAF mutation (K499E) discovered in RASopathy patients. We found expressing BRAF K499E (KE) in neural stem cells under the control of a Nestin-Cre promoter (Nestin;BRAFKE/+) induced hippocampal memory deficits, but expressing it in excitatory or inhibitory neurons did not. BRAF KE expression in neural stem cells led to aberrant reactive astrogliosis, increased astrocytic Ca2+ fluctuations, and reduced hippocampal long-term depression (LTD) in mice. Consistently, 3D human cortical spheroids expressing BRAF KE also showed reactive astrogliosis. Astrocyte-specific AAV-BRAF KE delivery induced memory deficits, reactive astrogliosis, and increased astrocytic Ca2+ fluctuations. Notably, reducing ERK activity in astrocytes rescued the memory deficits and altered astrocytic Ca2+ activity of Nestin;BRAFKE/+ mice. Furthermore, reducing astrocyte Ca2+ activity rescued the spatial memory impairments of BRAF KE-expressing mice. Our results demonstrate that ERK hyperactivity contributes to astrocyte dysfunction associated with Ca2+ dysregulation, leading to the memory deficits of BRAF-associated RASopathies.

Authors

Minkyung Kang, Jihye Choi, Jeongho Han, Toshiyuki Araki, Soo-Whee Kim, Hyun-Hee Ryu, Min-Gyun Kim, Seoyeon Kim, Hanbyul Jang, Sun Yong Kim, Kyoung-Doo Hwang, Soobin Kim, Myeongjong Yoo, Jaegeon Lee, Kitae Kim, Pojeong Park, Ja Eun Choi, Dae Hee Han, Yujin Kim, Jeongyeon Kim, Sunghoe Chang, Bong-Kiun Kaang, Jung Min Ko, Keun-Ah Cheon, Joon-Yong An, Sang Jeong Kim, Hyungju Park, Benjamin G. Neel, Chul Hoon Kim, Yong-Seok Lee

×

KRAS Mutants Confer Platinum Resistance by Regulating ALKBH5 Post-translational Modifications in Lung Cancer
Constitutively active mutations of KRAS are prevalent in non-small cell lung cancer (NSCLC). However, the relationship between these mutations and resistance to platinum-based chemotherapy and the...
View: Text | PDF
Research In-Press Preview Cell biology Oncology

KRAS Mutants Confer Platinum Resistance by Regulating ALKBH5 Post-translational Modifications in Lung Cancer

  • Text
  • PDF
Abstract

Constitutively active mutations of KRAS are prevalent in non-small cell lung cancer (NSCLC). However, the relationship between these mutations and resistance to platinum-based chemotherapy and the underlying mechanisms remain elusive. In this study, we demonstrated that KRAS mutants confer resistance to platinum in NSCLC. Mechanistically, KRAS mutants mediate platinum resistance in NSCLC cells by activating ERK/JNK signaling, which inhibits ALKBH5 m6A demethylase activity by regulating post-translational modifications (PTMs) of ALKBH5. Consequently, the KRAS mutant leads to a global increase in m6A methylation of mRNAs, particularly DDB2 and XPC, which are essential for nucleotide excision repair. This methylation stabilized the mRNA of these two genes, thus enhancing NSCLC cells’ ability to repair platinum-induced DNA damage and avoid apoptosis, thereby contributing to drug resistance. Furthermore, blocking KRAS-mutant-induced m6A methylation, either by overexpressing a SUMOylation-deficient mutant of ALKBH5, or by inhibiting METTL3 pharmacologically, significantly sensitizes KRAS-mutant NSCLC cells to platinum drugs in vitro and in vivo. Collectively, our study uncovers a previously unrecognized mechanism that mediates KRAS mutant-induced chemoresistance in NSCLC cells by activating DNA repair through the modulation of the ERK/JNK/ALKBH5 PTMs-induced m6A modification in DNA damage repair-related genes.

Authors

Fang Yu, Shikan Zheng, Chunjie Yu, Sanhui Gao, Zuqi Shen, Rukiye Nar, Zhexin Liu, Shuang Huang, Lizi Wu, Tongjun Gu, Zhijian Qian

×

Metastatic Tumor Growth in Steatotic Liver is Promoted by HAS2-Mediated Fibrotic Tumor Microenvironment
Steatotic liver enhances liver metastasis of colorectal cancer, but this process is not fully understood. Steatotic liver induced by a high-fat diet (HFD) increases cancer-associated fibroblast...
View: Text | PDF
Research In-Press Preview Hepatology Oncology

Metastatic Tumor Growth in Steatotic Liver is Promoted by HAS2-Mediated Fibrotic Tumor Microenvironment

  • Text
  • PDF
Abstract

Steatotic liver enhances liver metastasis of colorectal cancer, but this process is not fully understood. Steatotic liver induced by a high-fat diet (HFD) increases cancer-associated fibroblast (CAF) infiltration and collagen and hyaluronic acid (HA) production. We investigated the role of HA synthase 2 (HAS2) in the fibrotic tumor microenvironment in steatotic liver using Has2ΔHSC mice, in which Has2 is deleted from hepatic stellate cells. Has2ΔHSC mice had reduced steatotoic liver-associated metastatic tumor growth of MC38 colorectal cancer cells, collagen and HA deposition, and CAF and M2 macrophage infiltration. We found low-molecular-weight HA activates yes-associated protein (YAP) in cancer cells, which then releases connective tissue growth factor to further activate CAFs for HAS2 expression. Single-cell analyses revealed a link between CAF-derived HAS2 with M2 macrophages and colorectal cancer cells through CD44; these cells associated with exhausted CD8 T cells via programmed death-ligand 1 and programmed cell death protein 1. The HA synthesis inhibitors reduced steatotic liver-associated metastasis of colorectal cancer, YAP expression, CAF and M2 macrophage infiltration. In conclusion, steatotic liver modulates a fibrotic tumor microenvironment to enhance metastatic cancer activity through a bidirectional regulation between CAFs and metastatic tumors, enhancing the metastatic potential of colorectal cancer in the liver.

Authors

Yoon Mee Yang, Jieun Kim, Zhijun Wang, Jina Kim, So Yeon Kim, Gyu Jeong Cho, Jee Hyung Lee, Sun Myoung Kim, Takashi Tsuchiya, Michitaka Matsuda, Vijay Pandyarajan, Stephen J. Pandol, Michael S. Lewis, Alexandra Gangi, Paul W. Noble, Dianhua Jiang, Akil Merchant, Edwin M. Posadas, Neil A. Bhowmick, Shelly C. Lu, Sungyong You, Alexander M. Xu, Ekihiro Seki

×

PGLYRP2 drives hepatocyte-intrinsic innate immunity by trapping and clearing hepatitis B virus
Spontaneous clearance of hepatitis B virus (HBV) is frequent in adults (95%) but rare in infants (5%), emphasizing the critical role of age-related hepatic immunocompetence. However, the underlying...
View: Text | PDF
Research In-Press Preview Hepatology Virology

PGLYRP2 drives hepatocyte-intrinsic innate immunity by trapping and clearing hepatitis B virus

  • Text
  • PDF
Abstract

Spontaneous clearance of hepatitis B virus (HBV) is frequent in adults (95%) but rare in infants (5%), emphasizing the critical role of age-related hepatic immunocompetence. However, the underlying mechanisms of hepatocyte-specific immunosurveillance and age-dependent HBV clearance remain unclear. Here, we identified PGLYRP2 as a hepatocyte-specific pattern recognition receptor with age-dependent expression, and demonstrated that phase separation of PGLYRP2 was a critical driver of spontaneous HBV clearance in hepatocytes. Mechanistically, PGLYRP2 recognized and potentially eliminated covalently closed circular DNA (cccDNA) via phase separation, coordinated by its intrinsically disordered region and HBV DNA-binding domain (PGLYRP2IDR/209-377) in the nucleus. Additionally, PGLYRP2 suppressed HBV capsid assembly by directly interacting with the viral capsid, mediated by its PGRP domain. This interaction promoted the nucleocytoplasmic translocation of PGLYRP2 and subsequent secretion of the PGLYRP2-HBV capsid complex, thereby bolstering the hepatic antiviral response. Pathogenic variants or deletions in PGLYRP2 impaired its ability to inhibit HBV replication, highlighting its essential role in hepatocyte-intrinsic immunity. These findings suggest that targeting the PGLYRP2-mediated host-virus interaction may offer a potential therapeutic strategy for the development of anti-HBV treatments, representing a promising avenue for achieving a functional cure for HBV infection.

Authors

Ying Li, Huihui Ma, Yongjian Zhang, Tinghui He, Binyang Li, Haoran Ren, Jia Feng, Jie Sheng, Kai Li, Yu Qian, Yunfeng Wang, Haoran Zhao, Jie He, Huicheng Li, Hongjin Wu, Yuanfei Yao, Ming Shi

×

Ablating VHL in Rod Photoreceptors Modulates RPE Glycolysis and Improves Preclinical Model of Retinitis Pigmentosa
Neuroretinal degenerations including retinitis pigmentosa (RP) comprise a heterogeneous collection of pathogenic mutations that ultimately result in blindness. Despite recent advances in precision...
View: Text | PDF
Research In-Press Preview Metabolism Ophthalmology

Ablating VHL in Rod Photoreceptors Modulates RPE Glycolysis and Improves Preclinical Model of Retinitis Pigmentosa

  • Text
  • PDF
Abstract

Neuroretinal degenerations including retinitis pigmentosa (RP) comprise a heterogeneous collection of pathogenic mutations that ultimately result in blindness. Despite recent advances in precision medicine, therapies for rarer mutations are hindered by burdensome developmental costs. To this end, Von Hippel-Lindau (VHL) is an attractive therapeutic target to treat RP. By ablating VHL in rod photoreceptors and elevating hypoxia-inducible factor (HIF) levels, we demonstrate a path to therapeutically enhancing glycolysis independent of the underlying genetic variant that slows degeneration of both rod and cone photoreceptors in a preclinical model of retinitis pigmentosa. This rod-specific intervention also resulted in reciprocal, decreased glycolytic activity within the retinal pigment epithelium (RPE) cells despite no direct genetic modifications to the RPE. Suppressing glycolysis in the RPE provided notable, non-cell-autonomous therapeutic benefits to the photoreceptors, indicative of metabolically sensitive crosstalk between different cellular compartments of the retina. Surprisingly, targeting HIF2A in RPE cells did not impact RPE glycolysis, potentially implicating HIF1A as a major regulator in mouse RPE and providing a rationale for future therapeutic efforts aimed at modulating RPE metabolism.

Authors

Salvatore Marco Caruso, Xuan Cui, Brian M. Robbings, Noah Heaps, Aykut Demikrol, Bruna Lopes da Costa, Daniel T. Hass, Peter M.J. Quinn, Jianhai Du, James B. Hurley, Stephen H. Tsang

×

Integrative analysis reveals therapeutic potential of pyrvinium pamoate in Merkel cell carcinoma
Merkel Cell Carcinoma (MCC) is an aggressive neuroendocrine cutaneous malignancy arising from either ultraviolet-induced mutagenesis or Merkel cell polyomavirus (MCPyV) integration. Despite...
View: Text | PDF
Research In-Press Preview Dermatology Oncology Virology

Integrative analysis reveals therapeutic potential of pyrvinium pamoate in Merkel cell carcinoma

  • Text
  • PDF
Abstract

Merkel Cell Carcinoma (MCC) is an aggressive neuroendocrine cutaneous malignancy arising from either ultraviolet-induced mutagenesis or Merkel cell polyomavirus (MCPyV) integration. Despite extensive research, our understanding of the molecular mechanisms driving the transition from normal cells to MCC remains limited. To address this knowledge gap, we assessed the impact of inducible MCPyV T antigens on normal human fibroblasts by performing RNA sequencing. Our data uncovered changes in expression and regulation of Wnt signaling pathway members. Building on this observation, we bioinformatically evaluated various Wnt pathway perturbagens for their ability to reverse the MCC gene expression signature and identified pyrvinium pamoate, an FDA-approved anthelminthic drug known for its anti-tumor activity in other cancers. Leveraging transcriptomic, network, and molecular analyses, we found that pyrvinium targets multiple MCC vulnerabilities. Pyrvinium not only reverses the neuroendocrine features of MCC by modulating canonical and non-canonical Wnt signaling but also inhibits cancer cell growth by activating p53-mediated apoptosis, disrupting mitochondrial function, and inducing endoplasmic reticulum stress. Finally, we demonstrated that pyrvinium reduces tumor growth in an MCC mouse xenograft model. These findings offer a new understanding of the role of Wnt signaling in MCC and highlight the utility of pyrvinium as a potential treatment for MCC.

Authors

Jiawen Yang, James T. Lim, Paul Victor Santiago Raj, Marcelo G. Corona, Chen Chen, Hunain Khawaja, Qiong Pan, Gillian D. Paine-Murrieta, Rick G. Schnellmann, Denise J. Roe, Prafulla C. Gokhale, James A. DeCaprio, Megha Padi

×

Endothelial-specific postnatal deletion of Nos3 preserves intraocular pressure homeostasis via macrophage recruitment and NOS2 upregulation
Polymorphisms in Nos3 increases risk for glaucoma, the leading cause of irreversible blindness worldwide. A key modifiable risk factor for glaucoma is intraocular pressure (IOP), which is regulated...
View: Text | PDF
Research In-Press Preview Immunology Ophthalmology Vascular biology

Endothelial-specific postnatal deletion of Nos3 preserves intraocular pressure homeostasis via macrophage recruitment and NOS2 upregulation

  • Text
  • PDF
Abstract

Polymorphisms in Nos3 increases risk for glaucoma, the leading cause of irreversible blindness worldwide. A key modifiable risk factor for glaucoma is intraocular pressure (IOP), which is regulated by nitric oxide (NO), a product of nitric oxide synthase-3 (Nos3) in Schlemm’s canal of the conventional outflow pathway. We studied the effects of a conditional, endothelial-specific postnatal deletion of Nos3 (Endo-SclCre-ERT;Nos3flox/flox) on tissues of the outflow pathway. We observed that Cre-ERT expression spontaneously and gradually increased with time in vascular endothelia including Schlemm’s canal, beginning at P10, with complete Nos3 deletion occurring around P90. Unlike the reduced outflow resistance in global Nos3 knockout mice, outflow resistance and IOP in Endo-SclCre-ERT;Nos3flox/flox mice were normal. Coinciding with Nos3 deletion, we observed recruitment of macrophages to, and induction of both ELAM-1 and NOS2 expression by endothelia in the distal portion of the outflow pathway, which increased vessel diameter. These adjustments reduced outflow resistance to maintain IOP in these Endo-SclCre-ERT;Nos3flox/flox mice. Selective inhibition of iNOS by 1400W resulted in narrowing of distal vessels and IOP elevation. Together, results emphasize the pliability of the outflow system, the importance of NO signaling in IOP control and implicates an important role for macrophages in IOP homeostasis.

Authors

Ruth A. Kelly, Megan S. Kuhn, Ester Reina-Torres, Revathi Balasubramanian, Kristin M. Perkumas, Guorong Li, Takamune Takahashi, Simon W.M. John, Michael H. Elliott, Darryl R. Overby, W. Daniel Stamer

×

TRAF3 loss protects glioblastoma cells from lipid peroxidation and immune elimination via dysregulated lipid metabolism
Glioblastoma (GBM) is a highly aggressive form of brain tumor characterized by dysregulated metabolism. Increased fatty acid oxidation (FAO) protects tumor cells from lipid peroxidation-induced...
View: Text | PDF
Research In-Press Preview Cell biology Metabolism

TRAF3 loss protects glioblastoma cells from lipid peroxidation and immune elimination via dysregulated lipid metabolism

  • Text
  • PDF
Abstract

Glioblastoma (GBM) is a highly aggressive form of brain tumor characterized by dysregulated metabolism. Increased fatty acid oxidation (FAO) protects tumor cells from lipid peroxidation-induced cell death, although the precise mechanisms involved remain unclear. Herein, we report that loss of tumor necrosis factor receptor-associated factor 3 (TRAF3) in GBM critically regulates lipid peroxidation and tumorigenesis by controlling the oxidation of polyunsaturated fatty acids (PUFAs). TRAF3 is frequently repressed in GBM due to promoter hypermethylation. TRAF3 interacts with enoyl-CoA hydratase 1 (ECH1), an enzyme catalyzing the isomerization of unsaturated fatty acids (UFAs), and mediates K63-linked ubiquitination of ECH1 at Lys214. ECH1 ubiquitination impedes TOMM20-dependent mitochondrial translocation of ECH1, which otherwise promotes the oxidation of UFAs, preferentially the PUFAs, and limits lipid peroxidation. Overexpression of TRAF3 enhances the sensitivity of GBM to ferroptosis and anti-PD-L1 immunotherapy in mice. Thus, the TRAF3-ECH1 axis plays a key role in the metabolism of PUFAs, and is crucial for lipid peroxidation damage and immune elimination in GBM.

Authors

Yu Zeng, Liqian Zhao, Kunlin Zeng, Ziling Zhan, Zhengming Zhan, Shangbiao Li, Hongchao Zhan, Peng Chai, Cheng Xie, Shengfeng Ding, Yuxin Xie, Li Wang, Cuiying Li, Xiaoxia Chen, Daogang Guan, Enguang Bi, Jian-you Liao, Fan Deng, Xiaochun Bai, Ye Song, Aidong Zhou

×

TRIB3 mediates vascular calcification through facilitating self-ubiquitination and dissociation of Smurf1 in chronic renal disease
The osteogenic environment promotes vascular calcium phosphate deposition and aggregation of unfolded and misfolded proteins, resulting in endoplasmic reticulum (ER) stress in chronic renal disease...
View: Text | PDF
Research In-Press Preview Cardiology Vascular biology

TRIB3 mediates vascular calcification through facilitating self-ubiquitination and dissociation of Smurf1 in chronic renal disease

  • Text
  • PDF
Abstract

The osteogenic environment promotes vascular calcium phosphate deposition and aggregation of unfolded and misfolded proteins, resulting in endoplasmic reticulum (ER) stress in chronic renal disease (CKD). Controlling ER stress through genetic intervention is a promising approach for treating vascular calcification. In this study, we demonstrated a positive correlation between ER stress-induced tribble 3 (TRIB3) expression and progression of vascular calcification in human and rodent CKD. Increased TRIB3 expression promoted vascular smooth muscle cell (VSMC) calcification by interacting with the C2 domain of the E3 ubiquitin-protein ligase Smurf1, facilitating its K48-related self-ubiquitination at Lys381 and Lys383 and subsequent dissociation from the plasma membrane and nuclei. This degeneration of Smurf1 accelerated the stabilization of the osteogenic transcription factors RUNX Family Transcription Factor 2 (Runx2) and SMAD Family Member 1 (Smad1). C/EBP homologous protein and activating transcription factor 4 are upstream transcription factors of TRIB3 in an osteogenic environment. Genetic knockout of TRIB3 or rescue of Smurf1 ameliorated VSMC and vascular calcification by stabilizing Smurf1 and enhancing the degradation of Runx2 and Smad1. Our findings shed light on the vital role of TRIB3 as a scaffold in ER stress and vascular calcification and offer a potential therapeutic option for chronic renal disease.

Authors

Yihui Li, Chang Ma, Yanan Sheng, Shanying Huang, Huaibing Sun, Yun Ti, Zhihao Wang, Feng Wang, Fangfang Chen, Chen Li, Haipeng Guo, Mengxiong Tang, Fangqiang Song, Hao Wang, Ming Zhong

×

Phosphorylation of CRYAB induces a condensatopathy to worsen post-myocardial infarction left ventricular remodeling
Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart failure syndromes remains...
View: Text | PDF
Research In-Press Preview Cardiology Cell biology

Phosphorylation of CRYAB induces a condensatopathy to worsen post-myocardial infarction left ventricular remodeling

  • Text
  • PDF
Abstract

Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart failure syndromes remains mechanistically unexamined. We observed mis-localization of desmin and sarcomeric proteins to aggregates in human myocardium with ischemic cardiomyopathy and in mouse hearts with post-myocardial infarction ventricular remodeling, mimicking findings of autosomal-dominant cardiomyopathy induced by R120G mutation in the cognate chaperone protein, CRYAB. In both syndromes, we demonstrate increased partitioning of CRYAB phosphorylated on serine-59 to NP40-insoluble aggregate-rich biochemical fraction. While CRYAB undergoes phase separation to form condensates, the phospho-mimetic mutation of serine-59 to aspartate (S59D) in CRYAB mimics R120G-CRYAB mutants with reduced condensate fluidity, formation of protein aggregates and increased cell death. Conversely, changing serine to alanine (phosphorylation-deficient mutation) at position 59 (S59A) restored condensate fluidity, and reduced both R120G-CRYAB aggregates and cell death. In mice, S59D CRYAB knock-in was sufficient to induce desmin mis-localization and myocardial protein aggregates, while S59A CRYAB knock-in rescued left ventricular systolic dysfunction post-myocardial infarction and preserved desmin localization with reduced myocardial protein aggregates. 25-Hydroxycholesterol attenuated CRYAB serine-59 phosphorylation and rescued post-myocardial infarction adverse remodeling. Thus, targeting CRYAB phosphorylation-induced condensatopathy is an attractive strategy to counter ischemic cardiomyopathy.

Authors

Moydul Islam, David R. Rawnsley, Xiucui Ma, Walter Navid, Chen Zhao, Xumin Guan, Layla Foroughi, John T. Murphy, Honora Navid, Carla J. Weinheimer, Attila Kovacs, Jessica Nigro, Aaradhya Diwan, Ryan P. Chang, Minu Kumari, Martin E. Young, Babak Razani, Kenneth B. Margulies, Mahmoud Abdellatif, Simon Sedej, Ali Javaheri, Douglas F. Covey, Kartik Mani, Abhinav Diwan

×

Rapamycin Enhances CAR-T Control of HIV Replication and Reservoir Elimination in vivo
Chimeric Antigen Receptor (CAR) T cell therapy shows promise for various diseases. Our studies in humanized mice and non-human primates (NHPs) demonstrate that hematopoietic stem cell (HSCs)...
View: Text | PDF
Research In-Press Preview AIDS/HIV Immunology

Rapamycin Enhances CAR-T Control of HIV Replication and Reservoir Elimination in vivo

  • Text
  • PDF
Abstract

Chimeric Antigen Receptor (CAR) T cell therapy shows promise for various diseases. Our studies in humanized mice and non-human primates (NHPs) demonstrate that hematopoietic stem cell (HSCs) modified with anti-HIV CAR achieve lifelong engraftment, providing functional anti-viral CAR-T cells that reduce viral rebound after ART withdrawal. However, T cell exhaustion due to chronic immune activation remains a key obstacle for sustained CAR-T efficacy, necessitating additional measures to achieve functional cure. We recently showed that low dose rapamycin treatment reduced inflammation and improved anti-HIV T cell function in HIV-infected humanized mice. Here, we report that rapamycin improved CAR-T cell function both in vitro and in vivo. In vitro treatment with rapamycin enhanced CAR-T cell mitochondria respiration and cytotoxicity. In vivo treatment with low-dose rapamycin in HIV-infected, CAR-HSC mice decreased chronic inflammation, prevented exhaustion of CAR-T cells and improved CAR-T control of viral replication. RNAseq analysis of CAR-T cells from humanized mice showed that rapamycin downregulated multiple checkpoint inhibitors and the upregulated key survival genes. Mice treated with CAR-HSCs and rapamycin had delayed viral rebound post-ART and reduced HIV reservoir compared to CAR-HSCs alone. These findings suggest that HSCs-based anti-HIV CAR-T combined with rapamycin treatment is a promising approach for treating persistent inflammation and improving immune control of HIV replication.

Authors

Wenli Mu, Shallu Tomer, Jeffrey Harding, Nandita Kedia, Valerie Rezek, Ethan Cook, Vaibhavi Patankar, Mayra A. Carrillo, Heather Martin, Hwee L. Ng, Li Wang, Matthew D. Marsden, Scott D. Kitchen, Anjie Zhen

×

Safety and efficacy of pharmacological inhibition of ketohexokinase in hereditary fructose intolerance
View: Text | PDF
Research Letter In-Press Preview Endocrinology Metabolism

Safety and efficacy of pharmacological inhibition of ketohexokinase in hereditary fructose intolerance

  • Text
  • PDF
Abstract

Authors

Evi J.C. Koene, Amée M. Buziau, David Cassiman, Timothy M. Cox, Judith Bons, Jean L. J. M. Scheijen, Casper G. Schalkwijk, Steven J.R. Meex, Aditi R. Saxena, William P. Esler, Vera B. Schrauwen-Hinderling, Patrick Schrauwen, Martijn C.G.J. Brouwers

×

MBNL overexpression rescues cardiac phenotypes in a myotonic dystrophy type 1 heart mouse model
Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the DMPK gene. The expanded CUG repeat RNA (CUGexp RNA) transcribed from the mutant allele...
View: Text | PDF
Research In-Press Preview Genetics

MBNL overexpression rescues cardiac phenotypes in a myotonic dystrophy type 1 heart mouse model

  • Text
  • PDF
Abstract

Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the DMPK gene. The expanded CUG repeat RNA (CUGexp RNA) transcribed from the mutant allele sequesters the muscleblind-like (MBNL) family of RNA-binding proteins, causing their loss of function and disrupting regulated pre-mRNA processing. We used a DM1 heart mouse model that inducibly expresses CUGexp RNA to test the contribution of MBNL loss to DM1 cardiac abnormalities and explore MBNL restoration as a potential therapy. AAV9-mediated overexpression of MBNL1 and/or MBNL2 significantly rescued DM1 cardiac phenotypes including conduction delays, contractile dysfunction, hypertrophy, and mis-regulated alternative splicing and gene expression. While robust, rescue was partial compared to reduced CUGexp RNA and plateaued with increased exogenous MBNL expression. These findings demonstrate that MBNL loss is a major contributor to DM1 cardiac manifestations, and suggest that additional mechanisms play a role, highlighting the complex nature of DM1 pathogenesis.

Authors

Rong-Chi Hu, Yi Zhang, Larissa Nitschke, Sara J. Johnson, Ayrea E. Hurley, William R. Lagor, Zheng Xia, Thomas A. Cooper

×

ZDHHC18 promotes renal fibrosis development by regulating HRAS palmitoylation
Fibrosis is the final common pathway leading to end stage chronic kidney disease (CKD). However, the function of protein palmitoylation in renal fibrosis and underlying mechanisms remain unclear....
View: Text | PDF
Research In-Press Preview Nephrology

ZDHHC18 promotes renal fibrosis development by regulating HRAS palmitoylation

  • Text
  • PDF
Abstract

Fibrosis is the final common pathway leading to end stage chronic kidney disease (CKD). However, the function of protein palmitoylation in renal fibrosis and underlying mechanisms remain unclear. In this study, we observed that the expression of the palmitoyltransferase ZDHHC18 was significantly elevated in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models, and was significantly upregulated in the fibrotic kidneys of chronic kidney disease patients. Functionally, tubule-specific deletion of ZDHHC18 attenuated tubular epithelial cells partial epithelial-to-mesenchymal transition (EMT), then reduced production of profibrotic cytokine and alleviates tubulointerstitial fibrosis. In contrast, ZDHHC18 overexpression exacerbated progressive renal fibrosis. Mechanistically, ZDHHC18 catalyzed the palmitoylation of HRAS, which is pivotal for its translocation to the plasma membrane and subsequent activation. HRAS palmitoylation promoted downstream phosphorylation of MEK/ERK and further activated RREB1, enhancing SMAD binding to the Snai1 cis-regulatory regions. Taken together, our findings suggest that ZDHHC18 plays a crucial role in renal fibrogenesis and presents a potential therapeutic target for combating kidney fibrosis.

Authors

Di Lu, Gulibositan Aji, Guanyu Li, yue li, Wenlin Fang, Shuai Zhang, ruiqi yu, Sheng Jiang, xia gao, Yuhang Jiang, Qi Wang

×

RNase L represses hair follicle regeneration through altered innate immune signaling
Mammalian injury responses are predominantly characterized by fibrosis and scarring rather than functional regeneration. This limited regenerative capacity in mammals could reflect a loss of...
View: Text | PDF
Research In-Press Preview Dermatology Inflammation

RNase L represses hair follicle regeneration through altered innate immune signaling

  • Text
  • PDF
Abstract

Mammalian injury responses are predominantly characterized by fibrosis and scarring rather than functional regeneration. This limited regenerative capacity in mammals could reflect a loss of pro-regeneration programs or active suppression by genes functioning akin to tumor suppressors. To uncover programs governing regeneration in mammals, we screened transcripts in human subjects following laser rejuvenation treatment and compared them to mice with enhanced Wound Induced Hair Neogenesis (WIHN), a rare example of mammalian organogenesis. We found that Rnasel-/- mice exhibit an increased regenerative capacity, with elevated WIHN through enhanced IL-36α. Consistent with RNase L’s known role to stimulate caspase-1, we found that pharmacologic inhibition of caspases promoted regeneration in an IL-36 dependent manner in multiple epithelial tissues. We identified a negative feedback loop, where RNase L activated caspase-1 restrains the pro-regenerative dsRNA-TLR3 signaling cascade through the cleavage of toll-like adaptor protein TRIF. Through integrated single-cell RNA sequencing and spatial transcriptomic profiling, we confirmed Oas & Il36 genes to be highly expressed at the site of wounding and are elevated in Rnasel-/- mice wounds. This work suggests that RNase L functions as a regeneration repressor gene, in a functional tradeoff that tempers immune hyper-activation during viral infection at the cost of inhibiting regeneration.

Authors

Charles S. Kirby, Nasif Islam, Eric Wier, Martin P. Alphonse, Evan Sweren, Gaofeng Wang, Haiyun Liu, Dongwon Kim, Ang Li, Sam S. Lee, Andrew M. Overmiller, Yingchao Xue, Sashank Reddy, Nathan K. Archer, Lloyd S. Miller, Jianshi Yu, Weiliang Huang, Jace W. Jones, Sooah Kim, Maureen A. Kane, Robert H. Silverman, Luis A. Garza

×

Estrogen receptor alpha ablation reverses muscle fibrosis and inguinal hernias
Fibrosis of the lower abdominal muscle (LAM) contributes to muscle weakening and inguinal hernia formation, an ailment affecting a noteworthy fifty percent of men by age 75, necessitating surgical...
View: Text | PDF
Research In-Press Preview Cell biology Muscle biology Reproductive biology

Estrogen receptor alpha ablation reverses muscle fibrosis and inguinal hernias

  • Text
  • PDF
Abstract

Fibrosis of the lower abdominal muscle (LAM) contributes to muscle weakening and inguinal hernia formation, an ailment affecting a noteworthy fifty percent of men by age 75, necessitating surgical correction as the singular therapy. Despite its prevalence, the mechanisms driving LAM fibrosis and hernia development remain poorly understood. Utilizing a humanized mouse model that replicates elevated skeletal muscle tissue estrogen concentrations akin to aging men, we identified estrogen receptor alpha (ESR1) as a key driver of LAM fibroblast proliferation, extracellular matrix deposition, and hernia formation. Fibroblast-specific ESR1 ablation effectively prevented muscle fibrosis and herniation, while pharmacological ESR1 inhibition with fulvestrant reversed hernias and restored normal muscle architecture. Multiomic analyses on in vitro LAM fibroblasts unveiled an estrogen/ESR1-mediated activation of a distinct profibrotic cistrome and gene expression signature, concordant with observations in inguinal hernia tissues in human males. Our findings hold significant promise for prospective medical interventions targeting fibrotic conditions and presenting non-surgical avenues for addressing inguinal hernias.

Authors

Tanvi Potluri, Tianming You, Ping Yin, John S. Coon V, Jonah J. Stulberg, Yang Dai, David J Escobar, Richard L. Lieber, Hong Zhao, Serdar E. Bulun

×

Sleep-wake variation in body temperature regulates tau secretion and correlates with CSF and plasma tau
Sleep disturbance is bidirectionally associated with increased risks of Alzheimer’s disease and other tauopathies. While the sleep-wake cycle regulates interstitial and cerebrospinal fluid (CSF)...
View: Text | PDF
Research In-Press Preview Cell biology Neuroscience

Sleep-wake variation in body temperature regulates tau secretion and correlates with CSF and plasma tau

  • Text
  • PDF
Abstract

Sleep disturbance is bidirectionally associated with increased risks of Alzheimer’s disease and other tauopathies. While the sleep-wake cycle regulates interstitial and cerebrospinal fluid (CSF) tau levels, the underlying mechanisms remain unknown. Understanding these mechanisms is crucial given evidence indicates that tau pathology spreads through neuron-to-neuron transfer, involving the secretion and internalization of pathological tau forms. Here, we combine in vitro, in vivo and clinical methods to reveal a pathway by which changes in body temperature (BT) over the sleep-wake cycle modulate extracellular tau levels. In mice, higher BT during wakefulness and sleep-deprivation increased CSF and plasma tau levels, while also upregulating unconventional protein secretion pathway-I (UPS-I) components, including (i) intracellular tau dephosphorylation, (ii) caspase-3-mediated cleavage of tau (TauC3) and (iii) its membrane translocation through binding to PIP2 and syndecan-3. In humans, the increase in CSF and plasma tau levels observed post-wakefulness correlated with BT increase during wakefulness. By demonstrating that sleep-wake variation in BT regulates extracellular tau levels, our findings highlight the importance of thermoregulation in linking sleep disturbances to tau-mediated neurodegeneration, and the preventative potential of thermal interventions.

Authors

Geoffrey Canet, Felipe Da Gama Monteiro, Emma Rocaboy, Sofia Diego-Diaz, Boutheyna Khelaifia, Kelly Godbout, Aymane Lachhab, Jessica Kim, Daphne I. Valencia, Audrey Yin, Hau-Tieng Wu, Jordan C. Howell, Emily Blank, Francis Laliberté, Nadia Fortin, Emmanuelle Boscher, Parissa Fereydouni-Forouzandeh, Stéphanie Champagne, Isabelle Guisle, Sébastien S. Hébert, Vincent Pernet, Haiyan Liu, William Lu, Ludovic Debure, David M. Rapoport, Indu Ayappa, Andrew W. Varga, Ankit Parekh, Ricardo S. Osorio, Steve Lacroix, Mark P. Burns, Brendan P. Lucey, Esther M. Blessing, Emmanuel Planel

×

5-HT orchestrates Histone Serotonylation and Citrullination to Drive Neutrophil Extracellular Traps and Liver Metastasis
Serotonin (5-HT) is a neurotransmitter that has been linked to tumorigenesis. Whether and how 5-HT modulates cells in the microenvironment to regulate tumor metastasis remains to be largely...
View: Text | PDF
Research In-Press Preview Cell biology Oncology

5-HT orchestrates Histone Serotonylation and Citrullination to Drive Neutrophil Extracellular Traps and Liver Metastasis

  • Text
  • PDF
Abstract

Serotonin (5-HT) is a neurotransmitter that has been linked to tumorigenesis. Whether and how 5-HT modulates cells in the microenvironment to regulate tumor metastasis remains to be largely unknown. Here, we demonstrate that 5-HT is secreted by neuroendocrine prostate cancer (NEPC) cells to communicate with neutrophils and to induce neutrophil extracellular traps (NETs) in the liver, which in turn facilitates the recruitment of disseminated cancer cells and promotes liver metastasis. 5-HT induces histone serotonylation (H3Q5ser) and orchestrates histone citrullination (H3cit) in neutrophils to trigger chromatin decondensation and facilitate the formation of NETs. Interestingly, we uncover in this process a reciprocally reinforcing effect between H3Q5ser and H3cit and a crosstalk between the respective writers TGM2 and PAD4. Genetic ablation or pharmacological targeting of TGM2, or inhibiting 5-HT transporter (SERT) with the FDA-approved antidepressant drug fluoxetine reduces H3Q5ser and H3cit modifications, suppresses NETs formation, and effectively inhibits NEPC, small cell lung cancer, and thyroid medullary cancer liver metastasis. Collectively, the 5-HT-triggered NETs production highlights a new targetable neurotransmitter-immune axis in driving liver metastasis of neuroendocrine cancers.

Authors

Kaiyuan Liu, Yingchao Zhang, Genyu Du, Xinyu Chen, Lingling Xiao, Luyao Jiang, Na Jing, Penghui Xu, Chaoxian Zhao, Yiyun Liu, Huifang Zhao, Yujiao Sun, Jinming Wang, Chaping Cheng, Deng Wang, Jiahua Pan, Wei Xue, Pengcheng Zhang, Zhi-Gang Zhang, Wei-Qiang Gao, Shu-Heng Jiang, Kai Zhang, Helen He Zhu

×

Transcription of hepatitis B surface antigen shifts from cccDNA to integrated HBV DNA during treatment
The cornerstone of functional cure for chronic hepatitis B (CHB) is hepatitis B surface antigen (HBsAg) loss from blood. HBsAg is encoded by covalently closed circular DNA (cccDNA) and HBV DNA...
View: Text | PDF
Research In-Press Preview Infectious disease Virology

Transcription of hepatitis B surface antigen shifts from cccDNA to integrated HBV DNA during treatment

  • Text
  • PDF
Abstract

The cornerstone of functional cure for chronic hepatitis B (CHB) is hepatitis B surface antigen (HBsAg) loss from blood. HBsAg is encoded by covalently closed circular DNA (cccDNA) and HBV DNA integrated into the host genome (iDNA). Nucleos(t)ide analogues (NUCs), the mainstay of CHB treatment, rarely lead to HBsAg loss, which we hypothesized was due to continued iDNA transcription despite decreased cccDNA transcription. To test this, we applied a novel multiplex droplet digital PCR that identifies the dominant source of HBsAg mRNAs to 3436 single cells from paired liver biopsies from ten people with CHB and HIV receiving NUCs. With increased NUC duration, cells producing HBsAg mRNAs shifted from chiefly cccDNA to chiefly iDNA. This shift was due to both a reduction in the number of cccDNA-containing cells and diminished cccDNA-derived transcription per cell; furthermore, it correlated with reduced detection of proteins deriving from cccDNA but not iDNA. Despite this shift in the primary source of HBsAg, rare cells remained with detectable cccDNA-derived transcription, suggesting a source for maintaining the replication cycle. Functional cure must address both iDNA and residual cccDNA transcription. Further research is required to understand the significance of HBsAg when chiefly derived from iDNA.

Authors

Maraake Taddese, Tanner Grudda, Giulia Belluccini, Mark Anderson, Gavin Cloherty, Hyon S. Hwang, Monika Mani, Che-Min Lo, Naomi Esrig, Mark S. Sulkowski, Richard K. Sterling, Yang Zhang, Ruy M. Ribeiro, David L. Thomas, Chloe L. Thio, Ashwin Balagopal

×

← Previous 1 2 … 19 20 21 … 116 117 Next →


Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts