Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

Articles in this category appear as authors submitted them for publication, prior to copyediting and publication layout.
The senescence-associated secretome of hedgehog-deficient hepatocytes drives MASLD progression
The burden of senescent hepatocytes correlates with MASLD severity but mechanisms driving senescence, and how it exacerbates MASLD are poorly understood. Hepatocytes become senescent when...
Published August 27, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI180310.
View: Text | PDF
Research In-Press Preview Hepatology Metabolism

The senescence-associated secretome of hedgehog-deficient hepatocytes drives MASLD progression

  • Text
  • PDF
Abstract

The burden of senescent hepatocytes correlates with MASLD severity but mechanisms driving senescence, and how it exacerbates MASLD are poorly understood. Hepatocytes become senescent when Smoothened (Smo) is deleted to disrupt Hedgehog signaling. We aimed to determine if the secretomes of Smo-deficient hepatocytes perpetuate senescence to drive MASLD progression. RNA seq analysis confirmed that hepatocyte populations of MASLD livers are depleted of Smo(+) cells and enriched with senescent cells. When fed CDA-HFD, Smo(-) mice had lower antioxidant markers and developed worse DNA damage, senescence, MASH and liver fibrosis than Smo(+) mice. Sera and hepatocyte-conditioned medium from Smo(-) mice were depleted of thymidine phosphorylase (TP), a protein that maintains mitochondrial fitness. Treating Smo(-) hepatocytes with TP reduced senescence and lipotoxicity; inhibiting TP in Smo(+) hepatocytes had the opposite effects and exacerbated hepatocyte senescence, MASH, and fibrosis in CDA-HFD-fed mice. Therefore, we found that inhibiting Hedgehog signaling in hepatocytes promotes MASLD by suppressing hepatocyte production of proteins that prevent lipotoxicity and senescence.

Authors

Ji Hye Jun, Kuo Du, Rajesh Kumar Dutta, Raquel Maeso-Diaz, Seh-hoon Oh, Liuyang Wang, Guannan Gao, Ana Ferreira, Jon Hill, Steven S. Pullen, Anna Mae Diehl

×

Spatiotemporal transcriptomic mapping of regenerative inflammation in skeletal muscle reveals a dynamic multilayered tissue architecture
Tissue regeneration is orchestrated by macrophages that clear damaged cells and promote regenerative inflammation. How macrophages spatially adapt and diversify their functions to support the...
Published August 27, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI173858.
View: Text | PDF
Research In-Press Preview Inflammation

Spatiotemporal transcriptomic mapping of regenerative inflammation in skeletal muscle reveals a dynamic multilayered tissue architecture

  • Text
  • PDF
Abstract

Tissue regeneration is orchestrated by macrophages that clear damaged cells and promote regenerative inflammation. How macrophages spatially adapt and diversify their functions to support the architectural requirements of actively regenerating tissue remains unknown. In this study, we reconstructed the dynamic trajectories of myeloid cells isolated from acutely injured and early-stage dystrophic muscles. We identified divergent subsets of monocytes/macrophages and dendritic cells (DCs) and validated markers (e.g., GPNMB) and transcriptional regulators associated with defined functional states. In dystrophic muscle, specialized repair-associated subsets exhibited distinct macrophage diversity and reduced DC heterogeneity. Integrating spatial transcriptomics analyses with immunofluorescence uncovered the ordered distribution of subpopulations and multilayered regenerative inflammation zones (RIZs) where distinct macrophage subsets are organized in functional zones around damaged myofibers supporting all phases of regeneration. Importantly, intermittent glucocorticoid treatment disrupted the RIZs. Our findings suggest that macrophage subtypes mediated the development of the highly ordered architecture of regenerative tissues, unveiling the principles of the structured yet dynamic nature of regenerative inflammation supporting effective tissue repair.

Authors

Andreas Patsalos, Laszlo Halasz, Darby Oleksak, Xiaoyan Wei, Gergely Nagy, Petros Tzerpos, Thomas Conrad, David W. Hammers, H. Lee Sweeney, Laszlo Nagy

×

Quantifying variant contributions in cystic kidney disease using national-scale whole genome sequencing
Background Cystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to...
Published August 27, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI181467.
View: Text | PDF
Clinical Research and Public Health In-Press Preview Genetics Nephrology

Quantifying variant contributions in cystic kidney disease using national-scale whole genome sequencing

  • Text
  • PDF
Abstract

Background Cystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to ascertainment and other biases. Methods Using whole genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to generate quantitative estimates of disease risk for each genetic contributor to CyKD, across genes, variant types and allelic frequencies. Results In 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD genes, with novel statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. Quantification of disease risk for each gene (with replication in the separate UK BioBank study) revealed substantially lower risk associated with genes more recently associated with autosomal dominant polycystic kidney disease, with odds ratios for some below what might usually be regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did not reveal significant associations but suggested this category of variation contributes 3-9% to the heritability of CyKD across European ancestries. Conclusion By providing unbiased quantification of risk effects per gene, this research suggests that not all rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in families. This information may inform genetic testing and counselling in the clinic. Keywords: genomics, cystic kidney disease, renal, ADPKD, WGS

Authors

Omid Sadeghi-Alavijeh, Melanie MY. Chan, Gabriel T. Doctor, Catalin D. Voinescu, Alexander Stuckey, Athanasios Kousathanas, Alexander T. Ho, Horia C. Stanescu, Detlef Bockenhauer, Richard N. Sandford, Adam P. Levine, Daniel P. Gale

×

Mucins protect against Streptococcus pneumoniae virulence by suppressing pneumolysin expression
Published August 22, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI182769.
View: Text | PDF
Research Letter In-Press Preview Infectious disease Microbiology

Mucins protect against Streptococcus pneumoniae virulence by suppressing pneumolysin expression

  • Text
  • PDF
Abstract

Authors

Jade Bath, Elisabet Bjånes, Cengiz Goekeri, Jeff Hsiao, Deniz Uzun, Geraldine Nouailles, Victor Nizet, Katharina Ribbeck

×

Modulation of NOX2 causes obesity-mediated atrial fibrillation
Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase II (NOX2), a major source of oxidative stress and reactive oxygen species...
Published August 15, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI175447.
View: Text | PDF
Research In-Press Preview Cardiology

Modulation of NOX2 causes obesity-mediated atrial fibrillation

  • Text
  • PDF
Abstract

Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase II (NOX2), a major source of oxidative stress and reactive oxygen species (ROS) in the heart predisposes to AF, the underlying mechanisms remain unclear. Here, we studied NOX2-mediated ROS production in obesity-mediated AF using Nox2-knock-out (KO) mice and mature human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). Diet-induced obesity (DIO) mice and hiPSC-aCMs treated with palmitic acid (PA) were infused with a NOX blocker (apocynin) and a NOX2-specific inhibitor, respectively. We showed that NOX2 inhibition normalized atrial action potential duration and abrogated obesity-mediated ion channel remodeling with reduced AF burden. Unbiased transcriptomics analysis revealed that NOX2 mediates atrial remodeling in obesity-mediated AF in DIO mice, PA-treated hiPSC-aCMs, and human atrial tissue from obese individuals by upregulation of paired-like homeodomain transcription factor 2 (PITX2). Furthermore, hiPSC-aCMs treated with hydrogen peroxide, a NOX2 surrogate, displayed increased PITX2 expression, establishing a mechanistic link between increased NOX2-mediated ROS production and modulation of PITX2. Our findings offer insights into possible mechanisms through which obesity triggers AF and support NOX2 inhibition as a potential novel prophylactic or adjunctive therapy for patients with obesity-mediated AF.

Authors

Arvind Sridhar, Jaime DeSantiago, Hanna Chen, Mahmud Arif Pavel, Olivia Ly, Asia Owais, Miles Barney, Jordan Jousma, Sarath Babu Nukala, Khaled Abdelhady, Malek Massad, Lona Ernst Rizkallah, Sang-Ging Ong, Jalees Rehman, Dawood Darbar

×

PRMT5 mediated FUBP1 methylation accelerates prostate cancer progression
Strategies beyond hormone-related therapy should need to be developed to improve prostate cancer mortalityfor better disease management. Here we show that FUBP1 and its methylation are essential...
Published August 15, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI175023.
View: Text | PDF
Research In-Press Preview Oncology

PRMT5 mediated FUBP1 methylation accelerates prostate cancer progression

  • Text
  • PDF
Abstract

Strategies beyond hormone-related therapy should need to be developed to improve prostate cancer mortalityfor better disease management. Here we show that FUBP1 and its methylation are essential for prostate cancer progression, and a competitive peptide interfering with FUBP1 methylation suppresses the development of prostate cancer. FUBP1 accelerated prostate cancer development across in various pre-clinical models. PRMT5-mediated FUBP1 methylation, regulated by BRD4, was crucial for its oncogenic effect and correlated with earlier biochemical recurrence shorter treatment durations in our patient cohort. Suppressed prostate cancer progression was observed in different various genetic mouse models expressing FUBP1 mutants deficient in PRMT5-mediated methylation. A competitive peptide, which was delivered through nanocomplexes, successfully disrupted the interaction of FUBP1 with PRMT5, blocked FUBP1 methylation, and inhibited prostate cancer development in different various pre-clinical models. Overall, our findings suggest that targeting FUBP1 methylation provides a potentially therapeutic strategy for disease prostate cancer management.

Authors

Weiwei Yan, Xun Liu, Xuefeng Qiu, Xuebin Zhang, Jiahui Chen, Kai Xiao, Ping Wu, Chao Peng, Xiaolin Hu, Zengming Wang, Jun Qin, Liming Sun, Luonan Chen, Denglong Wu, Shengsong Huang, Lichen Yin, Zhenfei Li

×

TET3-overexpressing macrophages promote endometriosis
Endometriosis is a debilitating, chronic inflammatory disease affecting ~10% of reproductive age women worldwide with no cure. While macrophages have been intrinsically linked to the...
Published August 14, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI181839.
View: Text | PDF
Research In-Press Preview Inflammation Reproductive biology

TET3-overexpressing macrophages promote endometriosis

  • Text
  • PDF
Abstract

Endometriosis is a debilitating, chronic inflammatory disease affecting ~10% of reproductive age women worldwide with no cure. While macrophages have been intrinsically linked to the pathophysiology of endometriosis, targeting them therapeutically has been extremely challenging due to their high heterogeneity and because these disease-associated macrophages (DAMs) can be either pathogenic or protective. Here, we reported identification of pathogenic macrophages characterized by TET3 overexpression in human endometriosis lesions. We showed that factors from the disease microenvironment upregulated TET3 expression transforming macrophages into pathogenic DAMs. TET3 overexpression stimulated pro-inflammatory cytokine production via a feedback mechanism involving inhibition of let-7 miRNA expression. Remarkably, these cells relied on TET3 overexpression for survival, hence vulnerable to TET3 knockdown. We demonstrated that Bobcat339, a synthetic cytosine derivative, triggered TET3 degradation both in human and mouse macrophages. This degradation was dependent on a VHL E3 ubiquitin ligase whose expression was also upregulated in TET3-overexpressing macrophages. Furthermore, depleting TET3-overexpressing macrophages either through myeloid-specific Tet3 ablation or using Bobcat339 strongly inhibited endometriosis progression in mice. Our results defined TET3-overexpressing macrophages as key pathogenic contributors to and attractive therapeutic targets for endometriosis. Our findings may also be applicable to other chronic inflammatory diseases where DAMs have important roles.

Authors

Haining Lv, Beibei Liu, Yangyang Dai, Feng Li, Stefania Bellone, Yuping Zhou, Ramanaiah Mamillapalli, Dejian Zhao, Muthukumaran Venkatachalapathy, Yali Hu, Gordon G. Carmichael, Da Li, Hugh S. Taylor, Yingqun Huang

×

Pediatric glioma immune profiling identifies TIM3 as a therapeutic target in BRAF-Fusion pilocytic astrocytoma
Despite being the leading cause of childhood mortality, pediatric gliomas have been relatively understudied, and the repurposing of immunotherapies has not been successful. Whole transcriptome...
Published August 13, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI177413.
View: Text | PDF
Research In-Press Preview Immunology Oncology

Pediatric glioma immune profiling identifies TIM3 as a therapeutic target in BRAF-Fusion pilocytic astrocytoma

  • Text
  • PDF
Abstract

Despite being the leading cause of childhood mortality, pediatric gliomas have been relatively understudied, and the repurposing of immunotherapies has not been successful. Whole transcriptome sequencing, single-cell sequencing, and sequential multiplex immunofluorescence were used to identify an immunotherapy strategy evaluated in multiple preclinical glioma models. MAPK-driven pediatric gliomas have a higher interferon signature relative to other molecular subgroups. Single-cell sequencing identified an activated and cytotoxic microglia population designated MG-Act in BRAF-fused MAPK-activated pilocytic astrocytoma (PA), but not in high-grade gliomas or normal brain. TIM3 is expressed on MG-Act and on the myeloid cells lining the tumor vasculature but not normal brain. TIM3 expression becomes upregulated on immune cells in the PA microenvironment and anti-TIM3 reprograms ex vivo immune cells from human PAs to a pro-inflammatory cytotoxic phenotype. In a genetically engineered murine model of MAPK-driven low-grade gliomas, anti-TIM3 treatment increased median survival over IgG and anti-PD1 treated mice. ScRNA sequencing data during the therapeutic window of anti-TIM3 demonstrates enrichment of the MG-Act population. The therapeutic activity of anti-TIM3 is abrogated in the CX3CR1 microglia knockout background. These data support the use of anti-TIM3 in clinical trials of pediatric low-grade MAPK-driven gliomas.

Authors

Shashwat Tripathi, Hinda Najem, Corey Dussold, Sebastian Pacheco, Ruochen Du, Moloud Sooreshjani, Lisa A. Hurley, James P. Chandler, Roger Stupp, Adam M. Sonabend, Craig M. Horbinski, Rimas V. Lukas, Joanne Xiu, Giselle Y. López, Theodore P. Nicolaides, Valerie Brown, Nitin R. Wadhwani, Sandi K. Lam, Charles David James, Ganesh Rao, Maria G. Castro, Amy B. Heimberger, Michael DeCuypere

×

Teplizumab induces persistent changes in the antigen‐specific repertoire in individuals at‐risk for type 1 diabetes
BACKGROUND. Teplizumab, a FcR non-binding anti-CD3 mAb, is approved to delay progression of type 1 diabetes (T1D) at-risk patients. Previous investigations described the immediate effects of the...
Published August 13, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI177492.
View: Text | PDF
Clinical Research and Public Health In-Press Preview Autoimmunity Endocrinology

Teplizumab induces persistent changes in the antigen‐specific repertoire in individuals at‐risk for type 1 diabetes

  • Text
  • PDF
Abstract

BACKGROUND. Teplizumab, a FcR non-binding anti-CD3 mAb, is approved to delay progression of type 1 diabetes (T1D) at-risk patients. Previous investigations described the immediate effects of the 14-day treatment, but longer-term effects of the drug remain unknown. METHODS. With an extended analysis of study participants, we found that 36% were undiagnosed or remained clinical diabetes free after 5 years suggesting operational tolerance. Using single cell RNA-seq, we compared the phenotypes, transcriptome, and repertoire of peripheral blood CD8+ T cells including autoreactive T cells from study participants before and after teplizumab and features of responders and non-responders. RESULTS. At 3 months, there were transcriptional signatures of cell activation in CD4+ and CD8+ T cells including signaling that was reversed at 18 months. At that time, there was reduced expression of genes in T cell receptor and activation pathways in clinical responders. In CD8+ T cells, we found increased expression of genes associated with exhaustion and immune regulation with teplizumab treatment. These transcriptional features were further confirmed in an independent cohort. Pseudotime analysis showed differentiation of CD8+ exhausted and memory cells with teplizumab treatment. IL7R expression was reduced and patients with lower expression of CD127 had longer diabetes free intervals. In addition, the frequency of autoantigen reactive CD8+ T cells, that expanded in the placebo group over 18 months, did not increase in the teplizumab group. CONCLUSION. These findings indicate that teplizumab promotes operational tolerance in T1D, involving activation followed by exhaustion and regulation and prevents expansion of autoreactive T cells. TRIAL REGISTRATION. ClinicalTrials.gov: NCT01030861. FUNDING. NIDDK/NIH, Juvenile Diabetes Research Foundation.

Authors

Ana Lledó-Delgado, Paula Preston-Hurlburt, Sophia Currie, Pamela Clark, Peter S. Linsley, S. Alice Long, Can Liu, Galina Koroleva, Andrew J. Martins, John S. Tsang, Kevan C. Herold

×

Central regulation of feeding and body weight by ciliary GPR75
Variants of the G protein-coupled receptor 75 (GPR75) are associated with lower BMI in large-scale human exome sequencing studies. However, how GPR75 regulates body weight remains poorly...
Published August 13, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI182121.
View: Text | PDF
Research In-Press Preview Cell biology Metabolism

Central regulation of feeding and body weight by ciliary GPR75

  • Text
  • PDF
Abstract

Variants of the G protein-coupled receptor 75 (GPR75) are associated with lower BMI in large-scale human exome sequencing studies. However, how GPR75 regulates body weight remains poorly understood. Using random germline mutagenesis in mice, we identified a missense allele (Thinner) of Gpr75 that resulted in a lean phenotype and verified the decreased body weight and fat weight in Gpr75 knockout (Gpr75–/–) mice. Gpr75–/– mice displayed reduced food intake under a high-fat diet (HFD), and pair-feeding normalized their body weight. The endogenous GPR75 protein was exclusively expressed in the brains of 3xFlag tagged Gpr75 knock-in (3xFlag-Gpr75) mice, with consistent expression across different brain regions. GPR75 interacted with Gαq to activate various signaling pathways after HFD feeding. Additionally, GPR75 was localized in the primary cilia of hypothalamic cells, whereas the Thinner mutation (L144P) and human GPR75 variants with lower BMI failed to localize in the cilia. Loss of GPR75 selectively inhibited weight gain in HFD-fed mice but failed to suppress the development of obesity in Leptin ob mice and Adenylate cyclase 3 (Adcy3) mutant mice on a chow diet. Our data reveal that GPR75 is a ciliary protein expressed in the brain and plays an important role in regulating food intake.

Authors

Yiao Jiang, Yu Xun, Zhao Zhang

×

F18-FDG PET imaging as a diagnostic tool for immune checkpoint inhibitor-associated acute kidney injury
Published August 8, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI182275.
View: Text | PDF
Research Letter In-Press Preview Nephrology Oncology

F18-FDG PET imaging as a diagnostic tool for immune checkpoint inhibitor-associated acute kidney injury

  • Text
  • PDF
Abstract

Authors

Shruti Gupta, Olivia Green-Lingren, Sudhir Bhimaniya, Aleksandra Krokhmal, Heather Jacene, Marlies Ostermann, Sugama Chicklore, Ben Sprangers, Christophe M. Deroose, Sandra M. Herrmann, Sophia L. Wells, Sarah A. Kaunfer, Jessica L. Ortega, Clara Garcia-Carro, Michael Bold, Kevin L. Chen, Meghan E. Sise, Pedram Heidari, Wai Lun Will Pak, Meghan D. Lee, Pazit Beckerman, Yael Eshet, Raymond K. Hsu, Miguel Hernandez Pampaloni, Arash Rashidi, Norbert Avril, Vicki Donley, Zain Mithani, Russ Kuker, Muhammad O Awiwi, Mindy X. Wang, Sujal I. Shah, Michael D. Weintraub, Heiko Schoder, Raad B. Chowdhury, Harish Seethapathy, Kerry L. Reynolds, Maria Jose Soler, Ala Abudayyeh, Ilya Glezerman, David E. Leaf

×

Hif-2α programmes oxygen chemosensitivity in chromaffin cells
The study of transcription factors that determine specialised neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are...
Published August 6, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI174661.
View: Text | PDF
Research In-Press Preview Development Oncology

Hif-2α programmes oxygen chemosensitivity in chromaffin cells

  • Text
  • PDF
Abstract

The study of transcription factors that determine specialised neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are neurone-like electro-physiologically excitable cells that link the oxygen content of arterial blood to the neuronal control of breathing. In the adult, this oxygen chemosensitivity is exemplified by the Type I cells of the carotid body and recent work has revealed one isoform of the transcription factor HIF, HIF-2α, to have a non-redundant role in the development and function of that organ. Here we show that the activation of HIF-2α, including isolated overexpression alone, is sufficient to induce oxygen chemosensitivity in the otherwise unresponsive adult adrenal medulla. This phenotypic change in the adrenal medulla was associated with retention of extra-adrenal paraganglioma-like tissues that resemble the foetal organ of Zuckerkandl and also manifest oxygen chemosensitivity. Acquisition of chemosensitivity was associated with changes in the adrenal medullary expression of classes of genes that are ordinarily characteristic of the carotid body, including G-protein regulators and atypical subunits of mitochondrial cytochrome oxidase. Overall, the findings suggest that, at least in certain tissues, HIF-2α acts as a phenotypic driver for cells that display oxygen chemosensitivity, thus linking two major oxygen sensing systems.

Authors

Maria Prange-Barczynska, Holly A. Jones, Yoichiro Sugimoto, Xiaotong Cheng, Joanna D.C.C Lima, Indrika Ratnayaka, Gillian Douglas, Keith J. Buckler, Peter J. Ratcliffe, Thomas P. Keeley, Tammie Bishop

×

NKT cells promote Th1 immune bias to dengue virus that governs long term protective antibody dynamics
NKT cells are innate-like T cells, recruited to the skin during viral infection, yet their contributions to long-term immune memory to viruses are unclear. We identified granzyme K, a product made...
Published August 1, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI169251.
View: Text | PDF
Research In-Press Preview Immunology Infectious disease

NKT cells promote Th1 immune bias to dengue virus that governs long term protective antibody dynamics

  • Text
  • PDF
Abstract

NKT cells are innate-like T cells, recruited to the skin during viral infection, yet their contributions to long-term immune memory to viruses are unclear. We identified granzyme K, a product made by cytotoxic cells including NKT cells, is linked to induction of Th1-associated antibodies during primary dengue virus (DENV) infection in humans. We examined the role of NKT cells in vivo using DENV-infected mice lacking CD1d-dependent (CD1ddep) NKT cells. In CD1d-KO mice, Th1-polarized immunity and infection resolution were impaired, which was dependent on intrinsic NKT cell production of IFN-γ, since it was restored by adoptive transfer of WT but not IFN-γ-KO NKT cells. Furthermore, NKT cell deficiency triggered immune bias, resulting in higher levels of Th2-associated IgG1 than Th1-associated IgG2a, which failed to protect against a homologous DENV re-challenge and promoted antibody-dependent enhanced disease during secondary heterologous infections. Similarly, Th2-immunity, typified by a higher IgG4:IgG3 ratio, was associated with worsened human disease severity during secondary infections. Thus, CD1ddep NKT cells establish Th1 polarity during the early innate response to DENV, which promotes infection resolution, memory formation and long-term protection from secondary homologous and heterologous infections. These observations illustrate how early innate immune responses during primary infections can influence secondary infection outcomes.

Authors

Youngjoo Choi, Wilfried A.A. Saron, Aled O'Neill, Manouri Senanayake, Annelies Wilder-Smith, Abhay P.S. Rathore, Ashley L. St. John

×

Exosomal TNF-α mediates voltage-gated Na+ channels 1.6 overexpression and contributes to brain-tumor induced neuronal hyperexcitability
Patients affected by glioma frequently suffer of epileptic discharges, however the causes of brain tumor-related epilepsy (BTRE) are still not completely understood. We investigated the mechanisms...
Published August 1, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI166271.
View: Text | PDF
Research In-Press Preview Neuroscience Oncology

Exosomal TNF-α mediates voltage-gated Na+ channels 1.6 overexpression and contributes to brain-tumor induced neuronal hyperexcitability

  • Text
  • PDF
Abstract

Patients affected by glioma frequently suffer of epileptic discharges, however the causes of brain tumor-related epilepsy (BTRE) are still not completely understood. We investigated the mechanisms underlying BTRE by analyzing the effects of exosomes released by U87 glioma cells and by patient-derived glioma cells. Rat hippocampal neurons incubated for 24 h with these exosomes exhibited increased spontaneous firing, while their resting membrane potential shifted positively by 10-15 mV. Voltage clamp recordings demonstrated that the activation of the Na+ current shifted towards more hyperpolarized voltages by 10-15 mV. To understand the factors inducing hyperexcitability we focused on exosomal cytokines. Western Blot and ELISA assays show that TNF-α is present inside glioma-derived exosomes. Remarkably, incubation with TNF-α fully mimicked the phenotype induced by exosomes, with neurons firing continuously, while their resting membrane potential shifted positively. RT-PCR revealed that both exosomes and TNF-α induced over-expression of the voltage-gated Na channel Nav1.6, a low-threshold Na+ channel responsible for hyperexcitability. When neurons were preincubated with Infliximab, a specific TNF-α inhibitor, the hyperexcitability induced by exosomes and TNF-α were drastically reduced. We propose that Infliximab, an FDA approved drug to treat rheumatoid arthritis, could ameliorate the conditions of glioma patients suffering of BTRE.

Authors

Cesar Adolfo Sanchez Trivino, Renza Spelat, Federica Spada, Camilla D'Angelo, Ivana Manini, Irene Giulia Rolle, Tamara Ius, Pietro Parisse, Anna Menini, Daniela Cesselli, Miran Skrap, Fabrizia Cesca, Vincent Torre

×

Early ascertainment of genetic diagnoses clarifies impact on medium-term survival following neonatal congenital heart surgery
Published July 30, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI180098.
View: Text | PDF
Research Letter In-Press Preview Cardiology Genetics

Early ascertainment of genetic diagnoses clarifies impact on medium-term survival following neonatal congenital heart surgery

  • Text
  • PDF
Abstract

Authors

Benjamin J. Landis, Benjamin M. Helm, Matthew D. Durbin, Lindsey R. Helvaty, Jeremy L. Herrmann, Michael Johansen, Gabrielle C. Geddes, Stephanie M. Ware

×

Autism-associated neuroligin-3 deficiency in medial septum causes social deficits and sleep loss in mice
Patients with autism spectrum disorder (ASD) frequently experience sleep disturbance. Genetic mutations in Neuroligin-3 (NLG3) genes are highly correlative with ASD and sleep disturbance. However,...
Published July 26, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI176770.
View: Text | PDF
Research In-Press Preview Neuroscience

Autism-associated neuroligin-3 deficiency in medial septum causes social deficits and sleep loss in mice

  • Text
  • PDF
Abstract

Patients with autism spectrum disorder (ASD) frequently experience sleep disturbance. Genetic mutations in Neuroligin-3 (NLG3) genes are highly correlative with ASD and sleep disturbance. However, the cellular and neural circuit bases of this correlation remain elusive. Here, we find the conditional knockout of NLG3 (NLG3-CKO) in the medial septum (MS) impairs social memory and reduces sleep. NLG3 knockout in MS causes hyperactivity of MS-GABA neurons during social avoidance and wakefulness. Activation of MSGABA neurons induces social memory deficits and sleep loss in C57BL/6 mice. In contrast, inactivation of these neurons ameliorates social memory deficits and sleep loss in NLG3-CKO mice. Sleep deprivation leads to social memory deficits, while social isolation causes sleep loss, both resulting in a reduction of NLG3 expression and an increase in activity of GABAergic neurons in MS from C57BL/6 mice. Furthermore, MS-GABA-innervated CA2 neurons specifically regulate social memory without impacting sleep, whereas MSGABA-innervating neurons in the preoptic area selectively control sleep without affecting social behavior. Together, these findings demonstrate that the hyperactive MS-GABA neurons impair social memory and disrupt sleep resulting from NLG3 knockout in MS, and achieve the modality specificity through their divergent downstream targets.

Authors

Haiyan Sun, Yu Shen, Pengtao Ni, Xin Liu, Yan Li, Zhentong Qiu, Jiawen Su, Yihan Wang, Miao Wu, Xiangxi Kong, Jun-Li Cao, Wei Xie, Shuming An

×

Hepatic lipopolysaccharide binding protein partially uncouples inflammation from fibrosis in MAFLD
Published July 26, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI179752.
View: Text | PDF
Research Letter In-Press Preview Genetics Hepatology

Hepatic lipopolysaccharide binding protein partially uncouples inflammation from fibrosis in MAFLD

  • Text
  • PDF
Abstract

Authors

Dan Wang, Ania Baghoomian, Zhengyi Zhang, Ya Cui, Emily C. Whang, Xiang Li, Josue Fraga, Rachel Spellman, Tien S. Dong, We Li, Arpana Gupta, Jihane N. Benhammou, Tamer Sallam

×

A correctable immune niche for epithelial stem-cell reprogramming and post-viral lung diseases
Epithelial barriers are programmed for defense and repair but are also the site of long-term structural remodeling and disease. In general, this paradigm features epithelial stem cell (ESCs) that...
Published July 25, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI183092.
View: Text | PDF
Research In-Press Preview Pulmonology

A correctable immune niche for epithelial stem-cell reprogramming and post-viral lung diseases

  • Text
  • PDF
Abstract

Epithelial barriers are programmed for defense and repair but are also the site of long-term structural remodeling and disease. In general, this paradigm features epithelial stem cell (ESCs) that are called on to regenerate damaged tissues but can also be reprogrammed for detrimental remodeling. Here we identified a Wfdc21-dependent monocyte-derived dendritic cell (moDC) population that functioned as an early sentinel niche for basal-ESC reprogramming in mouse models of epithelial injury after respiratory viral infection. Niche function depended on moDC delivery of ligand GPNMB to basal-ESC receptor CD44 so that properly timed antibody blockade of ligand or receptor provided long-lasting correction of reprogramming and broad disease phenotypes. These same control points worked directly in mouse and human basal-ESC organoids. Together, the findings identify a mechanism to explain and modify what is otherwise a stereotyped but sometimes detrimental response to epithelial injury.

Authors

Kangyun Wu, Yong Zhang, Huiqing Yin-DeClue, Kelly Sun, Dailing Mao, Kuangying Yang, Stephen R. Austin, Erika C. Crouch, Steven L. Brody, Derek E. Byers, Christy M. Hoffmann, Michael E. Hughes, Michael J. Holtzman

×

Intercellular interaction between FAP+ fibroblasts and CD150+ inflammatory monocytes mediates fibro-stenosis in Crohn’s disease
Crohn's disease (CD) is marked by recurring intestinal inflammation and tissue injury, often resulting in fibro-stenosis and bowel obstruction, necessitating surgical intervention with high...
Published July 23, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI173835.
View: Text | PDF
Research In-Press Preview Gastroenterology Inflammation

Intercellular interaction between FAP+ fibroblasts and CD150+ inflammatory monocytes mediates fibro-stenosis in Crohn’s disease

  • Text
  • PDF
Abstract

Crohn's disease (CD) is marked by recurring intestinal inflammation and tissue injury, often resulting in fibro-stenosis and bowel obstruction, necessitating surgical intervention with high recurrence rates. To elucidate to the mechanisms underlying fibro-stenosis in CD, we analysed the transcriptome of cells isolated from the transmural ileum of CD patients, including a trio of lesions from each patient: non-affected, inflamed, and stenotic ileum samples, and compared them with samples from non-CD patients. Our computational analysis revealed that pro-fibrotic signals from a subset of monocyte-derived cells expressing CD150 induced a disease-specific fibroblast population, resulting in chronic inflammation and tissue fibrosis. The transcription factor TWIST1 was identified as a key modulator of fibroblast activation and extracellular matrix (ECM) deposition. Genetic and pharmacological inhibition of TWIST1 prevents fibroblast activation, reducing ECM production and collagen deposition. Our findings suggest that the myeloid-stromal axis may offer a promising therapeutic target to prevent fibro-stenosis in CD.

Authors

Bo-Jun Ke, Saeed Abdurahiman, Francesca Biscu, Gaia Zanella, Gabriele Dragoni, Sneha Santhosh, Veronica De Simone, Anissa Zouzaf, Lies van Baarle, Michelle Stakenborg, Veronika Bosáková, Yentl Van Rymenant, Emile Verhulst, Sare Verstockt, Elliott Klein, Gabriele Bislenghi, Albert M. Wolthuis, Jan Frič, Christine Breynaert, Andre D'Hoore, Pieter Van der Veken, Ingrid De Meester, Sara Lovisa, Lukas J.A.C. Hawinkels, Bram Verstockt, Gert De Hertogh, Séverine Vermeire, Gianluca Matteoli

×

Systemic and skin-limited delayed-type drug hypersensitivity reactions associate with distinct resident and recruited T cell subsets
Delayed-type drug hypersensitivity reactions are major causes of morbidity and mortality. The origin, phenotype and function of pathogenic T cells across the spectrum of severity requires...
Published July 23, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI178253.
View: Text | PDF
Research In-Press Preview Dermatology Immunology

Systemic and skin-limited delayed-type drug hypersensitivity reactions associate with distinct resident and recruited T cell subsets

  • Text
  • PDF
Abstract

Delayed-type drug hypersensitivity reactions are major causes of morbidity and mortality. The origin, phenotype and function of pathogenic T cells across the spectrum of severity requires investigation. We leveraged recent technical advancements to study skin-resident memory T cells (TRM) versus recruited T cell subsets in the pathogenesis of severe systemic forms of disease, SJS/TEN and DRESS, and skin-limited disease, morbilliform drug eruption (MDE). Microscopy, bulk transcriptional profiling and scRNAseq + CITEseq + TCRseq supported in SJS/TEN clonal expansion and recruitment of cytotoxic CD8+ T cells from circulation into skin, along with expanded and non-expanded cytotoxic CD8+ skin TRM. Comparatively, MDE displayed a cytotoxic T cell profile in skin without appreciable expansion and recruitment of cytotoxic CD8+ T cells from circulation, implicating TRM as potential protagonists in skin-limited disease. Mechanistic interrogation in patients unable to recruit T cells from circulation into skin and in a parallel mouse model supported that skin TRM were sufficient to mediate MDE. Concomitantly, SJS/TEN displayed a reduced regulatory T cell (Treg) signature compared to MDE. DRESS demonstrated recruitment of cytotoxic CD8+ T cells into skin like SJS/TEN, yet a pro-Treg signature like MDE. These findings have important implications for fundamental skin immunology and clinical care.

Authors

Pranali N. Shah, George A. Romar, Artür Manukyan, Wei-Che Ko, Pei-Chen Hsieh, Gustavo A. Velasquez, Elisa M. Schunkert, Xiaopeng Fu, Indira Guleria, Roderick T. Bronson, Kevin Wei, Abigail H. Waldman, Frank R. Vleugels, Marilyn G. Liang, Anita Giobbie-Hurder, Arash Mostaghimi, Birgitta A.R. Schmidt, Victor Barrera, Ruth K. Foreman, Manuel Garber, Sherrie J. Divito

×

← Previous 1 2 … 19 20 21 … 108 109 Next →


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts