B B Kahn
We have recently identified the molecular defect responsible for cross-reacting material-positive hemophilia A in two unrelated patients in which the substitution of cysteine for arginine-1689 (Factor VIII-East Hartford[FVIII-EH]) abolishes a critical Factor VIII light chain thrombin cleavage site. As other mutant proteins with a cysteine for arginine substitution have been modified in the presence of cysteamine, we have determined the effect of this and other reducing agents on FVIII-EH function. Cysteamine concentrations between 0.1 and 10 mM caused dose- and time-dependent increases in FVIII-EH VIII:C activity, as much as 14-fold (to 35 and 62 U/dl for the two patients tested). Comparable data were obtained in a standard one-stage VIII:C coagulation assay and in a chromogenic substrate assay measuring Factor Xa generation. Thrombin cleavage of the FVIII-EH light chain in the presence of cysteamine was documented by immunoadsorption and analysis. Cystamine and cysteamine-S-phosphate, similar compounds that do not possess a free thiol group, had no effect. Cysteamine augmentation of FVIII-EH VIII:C was abolished by the simultaneous addition of N-ethyl maleimide or iodoacetamide, but these sulfhydryl blocking agents did not prevent the VIII:C increase and light chain cleavage by thrombin if the plasma samples were dialyzed to remove the inhibitors before adding the cysteamine. However, incubation with DTT before iodoacetamide prevented the cysteamine effect after dialysis. These data suggest that when isolated from patient plasma, FVIII-EH cysteine-1689 is present in a disulfide bond. This bond is cleaved by cysteamine to form a new mixed disulfide, a pseudolysine that restores a thrombin cleavage site that is essential for procoagulant function.
A M Aly, M Arai, L W Hoyer
Factor VIII East Hartford (FVIII-EH) procoagulant activity is reduced because the substitution of cysteine for arginine 1689 abolishes an essential Factor VIII light chain thrombin cleavage site. Incubation of FVIII-EH plasma with penicillamine or DTT causes a five- to sixfold increase in FVIII-EH VIII:C, at 80 and 1 mM, respectively. While there is no FVIII-EH light chain cleavage when thrombin is added in the presence of penicillamine or DTT, these reducing agents disrupt the FVIII-vWf complex. For example, the addition of 5 mM DTT to normal or FVIII-EH plasma causes a 50% reduction in Factor VIII binding to vWf. These observations suggested that DTT increases FVIII-EH VIII:C by partial dissociation of FVIII-EH from vWf. This was verified by showing that vWf-free FVIII-EH had VIII:C activity of 21 U/dl, while the starting plasma level was 2.5 U/dl. Removal of other FVIII-EH plasma proteins by agarose gel filtration had no effect on VIII:C activity. The demonstration that this mutant Factor VIII has cofactor function when separated from vWf indicates that the dissociation of Factor VIII from vWf is an essential effect of Factor VIII light chain cleavage at arginine-1689.
A M Aly, L W Hoyer
The effects of acidosis and mineralocorticoids on cellular H+/HCO3- transport mechanisms were examined in intercalated cells of the outer stripe of outer medullary collecting duct (OMCDo) from rabbit. Intracellular pH (pHi) of intercalated cells was monitored by fluorescence ratio imaging using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). pHi recovered from an acid load at 2.8 +/- 0.5 x 10(-3) pHU/s in the absence of ambient Na+. This pHi recovery rate was similar in chronic acidosis induced by NH4Cl loading, but it was enhanced (+111%) by treatment with deoxycorticosterone acetate (DOCA). In a DOCA-treated group, luminal 10 microM SCH28080 and 0.1 mM omeprazole, H(+)-K(+)-ATPase inhibitors, did not change the pHi recovery rate, while luminal 0.5 mM N-ethylmaleimide blocked the rate by 68%. DOCA, but not acidosis, increased (approximately 40%) initial pHi response to bath HCO3- or Cl- reduction in Na(+)-free condition. After an acid load in the absence of Na+ and HCO3-, pHi response to basolateral Na+ addition was stimulated (+66%) by acidosis, but not by DOCA. Our results suggest that (a) mineralocorticoids stimulate H+/HCO3- transport mechanisms involved in transepithelial H+ secretion, i.e., a luminal NEM-sensitive H+ pump and basolateral Na(+)-independent Cl(-)-HCO3- exchange; and (b) acidosis enhances the activity of basolateral Na(+)-H+ exchange that may be responsible for pHi regulation.
M Kuwahara, S Sasaki, F Marumo
The large VH3 family of human immunoglobulin genes is commonly used throughout B cell ontogeny. However, B cells of the fetus and certain autoantibody-producing clones are restricted to a recurrent subset of VH3 genes, and VH3 B cells are deficient in certain immunodeficiency diseases. In this study, we have sequenced a set of rearranged VH3 genes generated by genomic polymerase chain reaction (PCR) from normal adults and those with common variable immunodeficiency (CVI). In both groups, all cones were readily identifiable with the fetal VH3 subset, and were further distinguished by limited DH motifs and exclusive use of JH4. In CVI, the residual population of VH3 B cells were notable for predominant use of 56p1-like VH genes. All clones displayed sequence divergence (including somatic mutation) with evidence of strong selection against complementarity-determining region (CDR) coding change. A survey of other V gene families indicates that human V gene diversity may be restricted in general by germline mechanisms. These findings suggest that the expressed antibody repertoire in the human adult may be much smaller than anticipated, and selected by processes in part distinct from the paradigm of maximal antigen-binding diversity.
J Braun, L Berberian, L King, I Sanz, H L Govan 3rd
To explore the mechanisms of antigen-specific immune unresponsiveness seen in microfilaremic patients with bancroftian filariasis, T and B cell precursor frequency analysis was performed using PBMC from individuals with either asymptomatic microfilaremia (MF, n = 7) or chronic lymphatic obstruction (CP, n = 20). Highly purified CD3+ cells were partially reconstituted with adherent cells and their proliferative response to parasite antigens determined in cultures of T cells by limiting dilution analysis. A filter immunoplaque assay also assessed the frequency of both total and parasite-specific Ig-producing B cells. While the lymphocyte proliferation to mitogens and to a nonparasite antigen (Streptolysin-O, [SLO]) were similar in all groups of patients, the frequency of parasite-specific CD3+ T cells was significantly lower (geometric mean [GM], 1/3,757) in MF patients when compared to that in CP patients (GM 1/1,513; P less than 0.001). Similarly, the proportion of lymphocytes producing parasite-specific IgE or IgG was significantly lower in MF patients (IgE mean, 0.2%; IgG mean, 0.33%) compared with CP patients (IgE mean, 3.2%; IgG mean, 1.76%; P less than 0.05 for both comparisons). These observations imply that low numbers of parasite-specific T and B lymphocytes may be partially responsible for the severely diminished capacity of lymphocytes from patients with MF to produce parasite-specific antibody and to proliferate to parasite antigen in vitro. Such differences in parasite-specific lymphocyte responses suggest that tolerance by clonal anergy may be a critical mechanism for maintaining the microfilaremic state.
C L King, V Kumaraswami, R W Poindexter, S Kumari, K Jayaraman, D W Alling, E A Ottesen, T B Nutman
Atrial natriuretic peptide (ANP)(31-67), a portion of the atrial peptide prohormone, circulates in humans, and its plasma level varies with atrial pressure. Like the more widely studied carboxy-terminal fragment ANP(99-126), ANP(31-67) stimulates natriuresis and diuresis. We examined the mechanism of this natriuresis by measuring the effects of ANP(31-67) on Na+ transport in cells of the rabbit inner medullary collecting duct (IMCD). ANP(31-67) (10(-8) M) caused a 26 +/- 4% inhibition of oxygen consumption (QO2); half-maximal inhibition occurred at 10(-11) M, suggesting a physiologic effect. This effect was not additive with either ouabain or amiloride, suggesting that it reflected inhibition of Na+ transport-dependent QO2. ANP(31-67) reduced the amphotericin-induced stimulation of QO2 consistent with inhibition by this peptide of the Na(+)-K(+)-ATPase. In addition, ANP(31-67) reduced ouabain-sensitive 86Rb+ uptake under Vmax conditions. Several lines of evidence indicated that PGE2, a known endogenous IMCD Na(+)-K(+)-ATPase inhibitor, mediates pump inhibition by ANP(31-67). Thus, ANP(31-67) inhibits Na+ transport by inhibiting the Na(+)-K(+)-ATPase of IMCD cells, an effect mediated by the generation of PGE2.
M E Gunning, H R Brady, G Otuechere, B M Brenner, M L Zeidel
Studies of streptozotocin-induced diabetes in rats have demonstrated that hepatic apo B and apo E production are reduced. To determine if reductions are related to decreases in hepatic mRNAs, we performed blotting analysis of total liver RNA with rat apo B, apo E, and albumin cDNA probes. The expected reduction in albumin mRNA levels to 48% of control livers occurred in diabetic rat liver, while apo B and apo E mRNA levels were unchanged. The proportion of translational stop codon (BSTOP) mRNA averaged 43% of total in diabetic rats similar to control levels. Long-term labeling experiments using [35S]methionine in primary cultures of rat hepatocytes and specific immunoprecipitations demonstrated production of apo B and apo E, and albumin by hepatocytes from diabetic rats was reduced to 37%, 53%, and 23% of controls. Pulse-chase studies, together with mRNA analyses, suggest that reduced hepatic secretion of apo B and apo E in diabetics is primarily a result of impaired translation and not intracellular degradation. Ribosome transit studies directly confirmed the prolonged elongation rates for apo B and apo E mRNAs in hepatocytes derived from diabetic rats. This effect was more pronounced on apo BH (higher molecular weight) than on apo BL (lower molecular weight). Treatment of diabetic rats with insulin for 7 d led to normalization of hepatic albumin mRNA levels with no substantial change in apo E mRNA levels. In contrast, insulin treatment resulted in significant increases in hepatic apo B mRNA over control levels. Results suggest hepatic albumin and apo B mRNA levels are responsive to insulin in the diabetic state.
J D Sparks, R Zolfaghari, C E Sparks, H C Smith, E A Fisher
Cloning and expression of the defective genes for delta-aminolevulinate dehydratase (ALAD) from a patient with inherited ALAD deficiency porphyria (ADP) were carried out. Cloning of cDNAs for the defective ALAD were performed from EBV-transformed lymphoblastoid cells of the proband, and nucleotide sequences were determined. Two separate point mutations resulting in a single amino acid change in each ALAD allele were identified. One, C718----T, termed 'G1', occurred in the allele within the substrate-binding site, producing an Arg240----Trp substitution; the other, G820----A, termed 'G2', occurred downstream of this site in the other allele, resulting in an Ala274----Thr substitution. Using the reverse transcription-polymerase chain reaction, the mother, the brother, and the sister were shown to have the G1 defect. Expression of the G1 cDNA in Chinese hamster ovary cells produced ALAD protein with little activity; the G2 cDNA produced the enzyme with approximately 50% normal activity. Pulse-labeling studies demonstrated that the G1 enzyme had a normal half life, while the G2 enzyme had a markedly decreased half life. These data thus define the separate point mutations in each ALAD allele, as well as the altered properties of the two enzymic proteins encoded by the mutant genes in a patient with ADP.
N Ishida, H Fujita, Y Fukuda, T Noguchi, M Doss, A Kappas, S Sassa
The clonality of human tumors can be studied by X inactivation/methylation analysis in female patients heterozygous for X-linked DNA polymorphisms. We present a detailed study on clonal tumor analysis with M27 beta, a highly informative probe detecting a polymorphic X chromosomal locus, DXS255. The polymorphism detected at this locus is due to variable numbers of tandem repeats. The rate of constitutional heterozygosity detected by M27 beta was 88%. Normal tissue from gastrointestinal mucosa and thyroid showed random, hence polyclonal, patterns. Nonrandom clonal X inactivation was detected in all 22 malignant neoplasms that had been shown to be clonal by other DNA markers, such as antigen receptor gene rearrangements or clonal loss of heterozygosity at 17p and other loci. 16/48 normal blood leukocyte samples (33%) showed considerably skewed X inactivation patterns. Comparison of blood leukocytes and normal tissue indicated that in a given individual, X inactivation patterns may be tissue specific. M27 beta was used to study the clonal composition of 13 benign thyroid nodules from 12 multinodular goiters with rapid recent growth, traditionally termed "adenomas." Nine of them were clonal, whereas four nodules and tissue from a case of Graves' goiter were not, indicating that some, but not all, such thyroid nodules may represent true clonal neoplasms. The M27 beta probe permits one to study the clonal composition by the X inactivation approach of a wide variety of solid tumors from most female patients. As a control, normal tissue homologous to the tumor type of interest is preferable to DNA from blood leukocytes, since the latter may show nonrandom X inactivation patterns in a fairly high proportion of cases. M27 beta may, therefore, be of limited use for the clonal analysis of neoplasms derived from hematopoietic cells.
M F Fey, H J Peter, H L Hinds, A Zimmermann, S Liechti-Gallati, H Gerber, H Studer, A Tobler
The infiltration of the synovial membrane (SM) by mononuclear cells, mostly T cells, is a typical histopathological feature associated with rheumatoid arthritis (RA). The entry of T lymphocytes into the SM is believed to be mediated by a number of molecules in the endothelium that are induced in response to a series of inflammatory mediators. In this study, we have investigated the adhesion of synovial T cells from RA patients to two endothelial ligands: endothelial-leukocyte adhesion molecule-1 (ELAM-1), the only selectin known to function as a vascular addressin for T cells, and vascular cell adhesion molecule-1 (VCAM-1), the cellular ligand of VLA-4. Our results clearly demonstrate that synovial T cells isolated from both SM and synovial fluid (SF), bearing an activated and memory phenotype, displayed an enhanced capacity to interact with these two endothelial molecules as compared with T cells from peripheral blood (PB) either of the same RA patients or healthy donors. A further enhancement of VLA-4-mediated T cell binding to VCAM-1 and fibronectin could be observed when already in vivo-activated synovial T cells were stimulated in vitro with phorbol esters, suggesting the existence of several cellular affinity levels for both very late activation-4 (VLA-4) ligands. Moreover, both PB and synovial T cells from RA patients exhibited strong proliferative responses when they were cultured with either fibronectin or VCAM-1 in combination with submitogenic doses of anti-CD3 mAb. This increased endothelial binding ability of synovial T lymphocytes together with their proliferation in response to the interaction with VCAM-1 and fibronectin may represent important mechanisms in the regulation of T cell penetration and persistence in the chronically inflamed SM of RA.
A A Postigo, R Garcia-Vicuña, F Diaz-Gonzalez, A G Arroyo, M O De Landázuri, G Chi-Rosso, R R Lobb, A Laffon, F Sánchez-Madrid
Although deranged phosphate transport is the fundamental abnormality in X-linked hypophosphatemic (XLH) rickets, it remains unknown if this defect is the consequence of an intrinsic kidney abnormality or aberrant production of a humoral factor. To discriminate between these possibilities, we examined phosphate homeostasis in normal and Hyp mice, subjected to renal crosstransplantation. We initially evaluated the effects of uninephrectomy on the indices of phosphate metabolism that identify the mutant biochemical phenotype. No differences were found in the serum phosphorus concentration, fractional excretion of phosphate (FEP), or tubular reabsorption of phosphate per milliliter of glomerular filtrate (TRP) in uninephrectomized normal and Hyp mice, compared with sham-operated controls. Subsequently, single kidneys from normal or Hyp mice were transplanted into normal and Hyp mouse recipients. Normal mice transplanted with normal kidneys and Hyp mice engrafted with mutant kidneys exhibited serum phosphorus, FEP, and TRP no different from those of uninephrectomized normal and Hyp mice, respectively. However, engraftment of normal kidneys in Hyp mice and mutant kidneys in normal mice affected neither serum phosphorus (4.69 +/- 0.31 and 8.25 +/- 0.52 mg/dl, respectively) nor FEP and TRP of the recipients. These data indicate that the Hyp mouse phenotype is neither corrected nor transferred by renal transplantation. Further, they suggest that the phosphate transport defect in Hyp mice, and likely X-linked hypophosphatemia, is the result of a humoral factor, and is not an intrinsic renal abnormality.
T Nesbitt, T M Coffman, R Griffiths, M K Drezner
This study examined the role of tissue kallikrein and kinins in renal vasodilation produced by infusion of amino acids (AA). In rats fed a 9% protein diet for 2 wk, intravenous infusion of a 10% AA solution over 60-90 min reduced total renal vascular resistance and increased glomerular filtration rate (GFR) by 25-40% and renal plasma flow (RPF) by 23-30% from baseline. This was associated with a two- to threefold increase in urinary kinin excretion rate. Acute treatment of rats with aprotinin, a kallikrein inhibitor, resulted in deposition of immunoreactive aprotinin in kallikrein-containing connecting tubule cells and inhibited renal kallikrein activity by 90%. A protinin pretreatment abolished the rise in urinary kinins and prevented significant increases in GFR and RPF in response to AA. In a second group of rats pretreated with a B2 kinin receptor antagonist, [DArg Hyp3, Thi5,8 D Phe7]bradykinin, AA infusion raised urinary kinins identically as in untreated controls, but GFR and RPF responses were absent. Aprotinin or the kinin antagonist produced no consistent change in renal function in rats that were not infused with AA.AA-induced increases in kinins were not associated with an increase in renal kallikrein activity. Notably, tissue active kallikrein level fell 50% in AA-infused rats. These studies provide evidence that kinins generated in the kidney participate in mediating renal vasodilation during acute infusion of AA.
A A Jaffa, C P Vio, R H Silva, R J Vavrek, J M Stewart, P F Rust, R K Mayfield
To better define thrombin-receptor interactions, we synthesized human thrombin peptides and identified binding-domain peptides that bind thrombin receptors and activate mitogenic signals (Glenn, K.C., G.H. Frost, J.S. Bergmann, and D.H. Carney. 1988. Pept. Res. 1:65-73). Treatment of full dermal dorsal incisions with a single topical application of thrombin receptor-activating peptide (TRAP-508) or human alpha-thrombin in saline enhances 7-d incisional breaking strength in normal rats up to 82% or 55% over saline-treated controls, respectively. Control wounds require approximately 11.5 d to achieve breaking strength equivalent to TRAP-treated wounds at day 7. Thus, a single application of TRAP accelerates healing, shifting the time course forward by up to 4.5 d. Histological comparisons at day 7 show more type I collagen, less evidence of prolonged inflammation, and an increase in number and maturity of capillaries in TRAP- and thrombin-treated incisions. Angiograms also show 50-65% more functional vascularization going across thrombin- and TRAP-treated surgical incisions. Thus, alpha-thrombin and thrombin peptides, such as those released following injury, appear to initiate or enhance signals required for neovascularization and wound healing. The ability to accelerate normal wound healing events with synthetic peptides representing receptor binding domains of human thrombin may offer new options for management of wound healing in man.
D H Carney, R Mann, W R Redin, S D Pernia, D Berry, J P Heggers, P G Hayward, M C Robson, J Christie, C Annable
The respiratory manifestations of cystic fibrosis (CF) are characterized by neutrophil-dominated airway inflammation. Since a variety of inflammatory stimuli are capable of inducing bronchial epithelial cells to express the gene for IL-8, a cytokine that attracts and activates neutrophils, mediators in respiratory epithelial lining fluid (ELF) of CF individuals might induce IL-8 production by epithelial cells, thus recruiting neutrophils to the airways. BET-1A human bronchial epithelial cells at rest or incubated with normal ELF showed little IL-8 gene expression, but after incubation with CF ELF, a marked increase in IL-8 transcript levels was observed. CF ELF contained high levels of neutrophil elastase (NE) and various serine protease inhibitors prevented CF ELF from inducing IL-8 gene expression in BET-1A cells, suggesting that NE was the dominant inducer for IL-8 production in CF ELF. The addition of purified NE caused BET-1A cells to increase IL-8 gene transcription with accumulation of mRNA transcripts and to release IL-8-like neutrophil chemotactic activity. These observations suggest a self-perpetuating inflammatory process on the CF bronchial surface where NE released by neutrophils induced the bronchial epithelium to secrete IL-8, which in turn recruits additional neutrophils to the bronchial surface.
H Nakamura, K Yoshimura, N G McElvaney, R G Crystal
The mechanism of inhibition of HCO3 transport by parathyroid hormone (PTH) in the proximal tubule is not clearly defined. Previous studies in vitro have suggested that this effect is mediated via cAMP generation, which acts to inhibit Na/H exchange, resulting in cell acidification. To examine this question in vivo, intracellular pH (pHi) was measured in the superficial proximal tubule of the rat using the pH-sensitive fluoroprobes 4-methylumbelliferone (4MU) and 2',7'-bis(carboxyethyl)-(5, and 6)-carboxyfluorescein (BCECF). PTH was found to alkalinize the cell. This alkalinization suggested inhibition of basolateral base exit, which was confirmed by in situ microperfusion studies: lowering HCO3 in peritubular capillaries acidified the cell, an effect blunted by PTH. Removal of luminal Na promoted basolateral base entry, alkalinizing the cell. This response was also blunted by PTH. Readdition of luminal Na stimulated the luminal Na/H exchanger, causing an alkalinization overshoot that was partially inhibited by PTH. cAMP inhibited luminal H secretion but did not alkalinize the cell. Stimulation of phosphatidylinositol-bis-phosphate turnover by PTH was suggested by the effect to the hormone to increase cell Ca. Blocking the PTH-induced rise in cell Ca blunted the effect of the hormone to alkalinize the cell, as did inhibition of phosphatidylinositol breakdown. Furthermore, stimulation of protein kinase C by a phorbol ester and a diacylglycerol applied basolaterally alkalinized the cell and inhibited luminal H secretion. The findings indicate that both arms of the phosphatidylinositol-bis-phosphate cascade play a role in mediating the effect of PTH on the cell pH. The results are consistent with the view that PTH inhibits base exit in the proximal tubule by activation of the phosphatidylinositol cascade. The resulting alkalinization may contribute, with cAMP, to inhibit apical Na/H exchange and the PTH-induced depression of proximal HCO3 reabsorption.
E Pastoriza-Munoz, R M Harrington, M L Graber
We have reported that dopamine (DA) inhibits Na-K-ATPase activity in the cortical collecting duct (CCD) by stimulating the DA1 receptor, and the present study was designed to evaluate the mechanism of this effect. Short-term exposure (15-30 min) of microdissected rat CCD to DA, a DA1 agonist (fenoldopam), vasopressin (AVP), forskolin, or dibutyryl cAMP (dBcAMP), which increase cAMP content by different mechanisms, strongly (approximately 60%) inhibited Na-K-ATPase activity. 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase, completely blocked Na-K-ATPase inhibition by DA or fenoldopam, and IP20, an inhibitor peptide of cAMP-dependent protein kinase A (PKA), abolished the Na:K pump effect of all the cAMP agonists listed above. To verify whether the mechanism of pump inhibition by agents that increase cell cAMP involves phospholipase A2 (PLA2), we used mepacrine, a PLA2 inhibitor, which also abolished Na-K-ATPase inhibition by DA or fenoldopam, as well as by AVP, forskolin, or dBcAMP. Arachidonic acid (10(-7) - 10(-4) M) inhibited Na-K-ATPase activity in dose-dependent fashion. Corticosterone, which induces lipomodulin, a PLA2 inhibitor protein inactivated by PKA, equally abolished the pump effects of DA, fenoldopam, forskolin, and dBcAMP, suggesting that lipomodulin might act between PKA and PLA2 in cAMP-dependent pump regulation. We conclude that dopamine inhibits Na-K-ATPase activity in the CCD through a DA1 receptor-mediated cAMP-PKA pathway that involves the stimulation of PLA2 and arachidonic acid release, possibly mediated by inactivation of lipomodulin. This pathway is shared by other agonists that increase cell cAMP and thus stimulate PKA activity.
T Satoh, H T Cohen, A I Katz
Closure of superficial wounds in epithelia occurs by migration of cells shouldering the wound. We describe an in vitro model of such restitution using a human intestinal epithelial cell line, T84. T84 cells were grown on novel optically transparent type 1 collagen membranes without underlying filter supports. Monolayers so grown display substantial barrier function (400-500 ohm.cm2; 1.3 +/- 0.4 nmol.h-1.cm-2 mannitol flux). Wounds made with micropipettes were accompanied by a fall in resistance and rise in monolayer permeability to mannitol and inulin. After injury, cells shouldering wounds migrated, by extension of lamellipodia-like processes, to reseal wounds as defined by structural and functional criteria. F actin arcs crossed the base of the lamellipodia-like extensions and F actin microspikes projected from the leading edge of these extensions. Villin, an epithelial-specific cytoskeletal protein with both F actin bundling and severing capacities, was also expressed at the leading edge in a pattern consistent with a regulatory role in the dynamic restructuring of lamellipodia. Lastly, myosin II was predominantly localized to the basal regions of lamellipodia, though occasional staining was seen close to the advancing edge. Myosin I, a recently recognized myosin family member considered to be essential for fibroblast and slime mold motility, was present throughout lamellipodia in punctate fashion, but was not concentrated at the leading edge.
A Nusrat, C Delp, J L Madara
Synovial fluid was collected from patients with recent knee injury and from patients with early or late stage osteoarthritis. Chondroitin sulfate-substituted aggrecan fragments present in these fluids, and in normal bovine synovial fluid, were purified by cesium chloride gradient centrifugation, enzymically deglycosylated and fractionated by gel filtration on Superose-12. Each sample contained two major aggrecan core protein populations with apparent molecular masses of approximately 90 kD and 150 kD. For all samples, NH2-terminal analysis of both populations gave a single major sequence beginning ARGSV. This NH2 terminus results from cleavage of the human aggrecan core protein at the Glu 373-Ala 374 bond within the interglobular domain between the G1 and G2 domains. Cleavage at this site also occurs during control and interleukin-1 stimulated aggrecan catabolism in bovine cartilage explant cultures (Sandy, J., P. Neame, R. Boynton, and C. Flannery. 1991. J. Biol. Chem. 266:8683-8685). These results indicate that the major aggrecan fragments present in both osteoarthritic human synovial fluid and in normal bovine synovial fluid are large, being composed of a short NH2-terminal stretch of the interglobular domain, the G2 domain, the keratan sulfate domain, and variable lengths of the chondroitin sulfate domain(s). We conclude that the release of aggrecan fragments from articular cartilage into the synovial fluid seen at all stages of human osteoarthritis (Lohmander, L. S. 1991. Acta Orthop. Scand. 62:623-632) is promoted by the action of a normal cartilage proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain.
J D Sandy, C R Flannery, P J Neame, L S Lohmander
We have recently reported the activation of a new oncogene in human papillary thyroid carcinomas. This oncogene, papillary thyroid carcinoma (PTC), is a novel rearranged version of the ret tyrosine-kinase protooncogene. Thyroid neoplasms include a broad spectrum of malignant tumors, ranging from well-differentiated tumors to undifferentiated anaplastic carcinomas. To determine the frequency of ret oncogene activation, we analyzed 286 cases of human thyroid tumors of diverse histologic types. We found the presence of an activated form of the ret oncogene in 33 (19%) of 177 papillary carcinomas. By contrast, none of the other 109 thyroid tumors, which included 37 follicular, 15 anaplastic, and 18 medullary carcinomas, and 34 benign lesions, showed ret activation.
M Santoro, F Carlomagno, I D Hay, M A Herrmann, M Grieco, R Melillo, M A Pierotti, I Bongarzone, G Della Porta, N Berger
Colo 320 cells are colonic carcinoma cells known to express abundant c-myc mRNA. Based on the response of several hematopoietic cell lines to chemical inducers of differentiation, we reasoned that such agents might have similar inductive activity in Colo 320 cells. Accordingly, we exposed Colo 320 cells to 5 mM sodium butyrate (NaBT) for 7 d. C-myc expression decreased threefold and self-replicative potential decreased (defined as a greater than 60% decrease in colony-forming capacity in soft agar that did not contain inducer). In an effort to demonstrate a direct cause and effect between myc expression and the colony-forming capacity of Colo 320 cells, we exposed these cells to a 15-base antisense c-myc oligonucleotide (complementary to the translation initiation region of exon II). Cells were also exposed to equimolar (20 microM) amounts of sense and missense oligonucleotides. Subsequently, cells were incubated at 10, 20, 30, and 40 microM antisense DNA for 16 h, then washed and plated in oligonucleotide-free agar medium. We demonstrated that: (a) the oligomers were stable in the extracellular medium and in the cell cytoplasm; (b) the uptake of the oligonucleotides was 0.7%; (c) sense and missense oligonucleotides had no effect on colony-forming capacity; and (d) the antisense c-myc oligonucleotide resulted in a 40-75% concentration-dependent decrease in colony-forming capacity. The specific inhibition of colony-forming capacity by antisense DNA suggests that the role of myc expression in Colo 320 cells is similar to its role in hematopoiesis, and that the failure to inhibit myc expression maintains colony-forming capacity. This system provides a new strategy for inducing differentiation and may provide further insight into the genetic factors that govern the process of colonic carcinogenesis.
J F Collins, P Herman, C Schuch, G C Bagby Jr
The actions, localization, and regulation of activin in the human ovary are unknown. Therefore, the aims of this study were (a) to define the effects of recombinant activin-A and its structural homologue, inhibin-A, on mitogenesis and steroidogenesis (progesterone secretion and aromatase activity) in human preovulatory follicular cells; (b) to localize the activin-A dimer in the human ovary by immunohistochemistry; and (c) to examine regulation of intracellular activin-A production in cultured human follicular cells. In addition to stimulating mitogenic activity, activin-A causes a dose- and time-dependent inhibition of basal and gonadotropin-stimulated progesterone secretion and aromatase activity in human luteinizing follicular cells on day 2 and day 4 of culture. Inhibin-A exerts no effects on mitogenesis, basal or gonadotropin-stimulated progesterone secretion and aromatase activity, and does not alter effects observed with activin-A alone. Immunostaining for dimeric activin-A occurs in granulosa and cumulus cells of human ovarian follicles and in granulosa-lutein cells of the human corpus luteum. cAMP, and to a lesser degree human chorionic gonadotropin and follicle-stimulating hormone, but not inhibin-A, activin-A, or phorbol 12-myristate 13-acetate, increased the immunostaining for activin-A in cultured granulosa cells. These results indicate that activin-A may function as an autocrine or paracrine regulator of follicular function in the human ovary.
J Rabinovici, S J Spencer, N Doldi, P C Goldsmith, R Schwall, R B Jaffe
The molecular defect responsible for a dramatic prolongation of all standard clotting tests discovered in a 15-yr-old boy has been identified. Initial investigations revealed the presence of an activated Factor X (Factor Xa) and thrombin inhibitor which copurified with alpha 1-antitrypsin (alpha 1-AT), thereby suggesting the occurrence of an alpha 1-AT variant similar to alpha 1-AT Pittsburgh. This was confirmed by dot-blot analysis and direct sequencing after amplification by the polymerase chain reaction. A G to T transition at nucleotide 10038 results in the substitution of Met to an Arg, converting alpha 1-AT into an Arg-Ser protease inhibitor (serpin) that inhibited thrombin and Factor Xa more effectively than antithrombin III. Surprisingly, there was no bleeding history in the proband. The common mutation Z, which may explain a reduced expression of the allele bearing the Arg 358 Met mutation, was not observed in the propositus' DNA. To exclude the presence of another mutation, the coding regions and intron/exon junctions were sequenced. No other mutation was found. Recently, the patient experienced his first hemorrhagic episode at the age of 17. The level of the abnormal inhibitor had increased twofold 2 mo before. The large decrease in protein C concentration may account for the mild bleeding tendency in this case, despite the presence of the alpha 1-AT Pittsburgh mutation. An abnormal protein C pattern was observed in patient's plasma, suggesting that the circulating deficiency might be due to a deleterious effect of the abnormal inhibitor on both intracellular processing and catabolism of protein C.
D Vidaud, J Emmerich, M Alhenc-Gelas, J Yvart, J N Fiessinger, M Aiach
Lipoprotein lipase (LPL), hydrolyzes the core triglycerides of lipoproteins, thereby playing a role in their maturation. LPL may be important in the metabolic pathways that lead to atherosclerosis, since it is secreted in vitro by both of the predominant cell types of the atherosclerotic plaque, i.e., macrophages and smooth muscle cells. Because of uncertainty concerning the primary cellular source of LPL in atherosclerotic lesions, in situ hybridization assays for LPL mRNA were performed on 12 coronary arteries obtained from six cardiac allograft recipients. Macrophages and smooth muscle cells were identified on adjacent sections with cell-specific antibodies and foam cells were identified morphologically. LPL protein was localized using a polyclonal antibody. LPL mRNA was produced by a proportion of plaque macrophages, particularly macrophage-derived foam cells, but was not detected in association with any intimal or medial smooth muscle cells. These findings were confirmed by combined immunocytochemistry and in situ hybridization on the same tissue sections. LPL protein was detected in association with macrophage-derived foam cells, endothelial cells, adventitial adipocytes, and medial smooth muscle cells, and, to a lesser extent, in intimal smooth muscle cells and media underlying well-developed plaque. These results indicate that macrophage-derived foam cells are the primary source of LPL in atherosclerotic plaques and are consistent with a role for LPL in the pathogenesis of atherosclerosis.
K D O'Brien, D Gordon, S Deeb, M Ferguson, A Chait
The present study was undertaken to evaluate the extent to which an endogenous interleukin-1 (IL-1) response contributes to the hemodynamic and metabolic consequences of sublethal endotoxemia or lethal Gram-negative septic shock. Young, healthy baboons received either a sublethal dose of lipopolysaccharide (LPS) or an LD100 of live Escherichia coli bacteria, and one half of the animals in each group were continuously infused with IL-1 receptor antagonist (IL-1ra). Plasma IL-1 beta was not detected in this model of endotoxemia. Administration of IL-1ra had only minimal effects on the modest hemodynamic and metabolic responses to sublethal endotoxemia, and did not attenuate the plasma cytokine response. In contrast, high circulating levels of IL-1 beta (range 300-800 pg/ml) were seen during lethal E. coli septic shock. IL-1ra treatment significantly attenuated the decrease in mean arterial blood pressure (MAP) (from -72 +/- 8 to -43 +/- 6 mm Hg; P less than 0.05) and cardiac output (from -0.81 +/- 0.17 to -0.48 +/- 0.15 liter/min; P less than 0.05), and significantly improved survival from 43 to 100% at 24 h (P less than 0.05). The plasma IL-1 beta and IL-6 responses to lethal E. coli septic shock were also significantly diminished by IL-1ra treatment (P less than 0.05), whereas tumor necrosis factor-alpha (TNF alpha) concentrations were unaffected. We conclude that an exaggerated systemic IL-1 beta response is characteristic of lethal E. coli septic shock, and contributes significantly to the hemodynamic and metabolic consequences of E. coli septic shock. IL-1ra can significantly attenuate the cytokine cascade and improve survival.
E Fischer, M A Marano, K J Van Zee, C S Rock, A S Hawes, W A Thompson, L DeForge, J S Kenney, D G Remick, D C Bloedow
Antiphospholipid syndrome (APLS) is characterized by thrombocytopenia, thromboembolic phenomena, and recurrent fetal loss, associated with anticardiolipin antibodies (ACA) and/or lupus anticoagulant. The syndrome may be primary or may be associated with other conditions such as systemic lupus erythematosus. We have previously shown the ability to induce APLS in naive mice following passive transfer of serum and monoclonal ACAs. Similarly we generated the secondary APLS in BALB/c mice following immunization with a pathogenic anti-DNA antibody. In the current study we report on the induction of primary APLS following immunization of BALB/c mice with a human monoclonal ACA (H-3). The mice developed high persistent titers of ACA. The APLS was characterized by prolonged activated partial thromboplastin time, low fecundity rate (21% vs. 48% of control immunized mice), high resorption index of fetuses (25% vs. 3%), and low weights of embryos and placentae. Our study points to the ability of inducing primary APLS in naive mice. The induction of various presentations of APLS by different ACA may explain the diversity of clinical manifestations seen in patients with APLS.
R Bakimer, P Fishman, M Blank, B Sredni, M Djaldetti, Y Shoenfeld
The plasma appearance of newly synthesized cholesterol in anhepatic laboratory diet-fed rats was 10% of the intact rat. In intact rats this cholesterol was mainly ester in lower density lipoproteins, but for anhepatic rats it was virtually only free in high density lipoprotein. Chylomicron cholesterol ester was removed much more slowly from anhepatic than control plasma and returned primarily as free in high density lipoproteins, with the control return 10 times the anhepatic return. Lower density lipoprotein cholesterol ester transfer to an extravascular pool in anhepatic rats was less than 10% of controls. The liver was responsible for 95% of the extravascular lower density lipoprotein ester pool and only 50% of the for high density lipoprotein ester. Despite decreased anhepatic lipoprotein catabolism, the mass of both plasma low and high density lipoproteins progressively decreased indicating an even greater decrease in influx. The anhepatic fractional catabolic rate of apo A1 was similar to controls, but that of apo E was considerably less. Despite the unchanged catabolism of apo A1 and the reduced catabolism of apo E, plasma apo A1 decreased less than apo E after hepatectomy. The anhepatic data confirm the pivotal role of the liver in maintaining plasma low and high density lipoprotein cholesterol concentrations. They suggest that, in addition to its anabolic and catabolic functions, the liver also acts as a reservoir buffering changes in plasma concentration.
S H Quarfordt, B Landis, G Cucchiaro, Y Yamaguchi, B Oswald
Pharyngeal collapse in obstructive sleep apnea patients is likely a product of a sleep-related decrement in pharyngeal dilator muscle activity superimposed upon abnormal airway anatomy. We postulate that during wakefulness, increased pharyngeal dilator muscle activity in apnea patients compensates for diminished airway size thus maintaining patency. We studied the waking genioglossus (GG) electromyogram (EMG) activity in 11 OSA patients and 14 age-matched controls to determine if GG activity is higher in the awake state in apnea patients than controls. To make this determination, we developed a reproducible methodology whereby true maximal GG EMG could be defined and thus basal activity quantitated as a percentage of this maximal value. Therefore, direct comparisons of basal activity between individuals was possible. We observed apnea patients to have significantly greater basal genioglossal activity compared to controls (40.6 +/- 5.6% vs. 12.7 +/- 1.7% of maximum). This difference persisted when size-matched subsets were compared. This augmented GG activity in apnea patients could be reduced with positive airway pressure. We speculate that this neuromuscular compensation present during wakefulness in apnea patients may be lost during sleep leading to airway collapse.
W S Mezzanotte, D J Tangel, D P White
In ischemia-reflow states of coronary artery disease, the activation of PMN precedes the initiation of tissue damage. Release of atrial natriuretic peptide (ANP) from myocytes occurs within minutes after the onset of myocardial ischemia, which suggests a possible role of ANP in PMN activation. To investigate this possibility, we tested the effects of ANP on functions of PMN in vitro. ANP is a potent signal for priming the PMN respiration burst to secrete superoxide anion. Phorbol 12-myristate 13-acetate, opsonized zymosan, or FMLP could all be used as triggering stimuli to demonstrate the priming of PMN activation by ANP. Only ANP fragments 1-28 and 7-28 enhanced respiration burst activity but identical preparations of ANP fragments 13-18 or 1-11 failed to do so. This structure-activity relationship is typical of receptors for ANP found in other tissues. In addition, ANP stimulated the release of beta-glucuronidase From PMN triggered by FMLP. The observed inhibition by ANP of FMLP-stimulated chemotaxis of PMN may be due to their enhanced adhesiveness. These data show that a classic cardiac hormone is involved in regulating important functional activities of PMN. These data support the possibility that ANP could act as a preinflammatory substance in ischemia-reperfusion states and myocardial necrosis.
C J Wiedermann, M Niedermühlbichler, H Braunsteiner, C J Widermann
Mild heating of human neutrophils inactivates the respiratory burst oxidase, producing a defect in superoxide production and bacterial killing comparable to that seen in patients afflicted with chronic granulomatous disease (CGD). We have now investigated the mechanism and specificity of this inactivation by examining the effect of mild heating on the known oxidase components: the membrane-bound subunits of the cytochrome b558 (gp91-phox and p22-phox) and the two cytosolic oxidase factors (p47-phox and p67-phox). Heating (46 degrees C for 7.5 min) caused intact neutrophils to lose greater than 85% of their capacity to produce superoxide, a defect which was localized to the cytosolic, but not the membrane, fraction. Complementation studies with CGD cytosols deficient in either p47-phox or p67-phox suggested that the defective component of heat-inactivated cytosol was p67-phox. This was confirmed by experiments showing that recombinant p67-phox, but not p47-phox, exhibited lability at 46 degrees C and completely reconstituted oxidase activity of heat-treated cytosol. These studies indicate that mild heating of either intact neutrophils or normal neutrophil cytosol results in a selective inactivation of p67-phox, providing a model oxidase system for the extremely rare p67-phox-deficient form of CGD.
R W Erickson, S E Malawista, M C Garrett, G Van Blaricom, T L Leto, J T Curnutte
To test the hypothesis that alterations in regulatory regions of the insulin gene occur in a subset of patients with non-insulin-dependent diabetes mellitus (NIDDM), the promoter region was studied by polymerase chain reaction (PCR) amplification directly from genomic DNA, followed by high-resolution polyacrylamide gel electrophoresis under nondenaturing conditions. By using this method a previously identified HincII polymorphism (GTTGAC to GTTGAG at position-56) in American Blacks was readily detected, indicating that single base changes could be observed. In the course of screening the insulin promoter from 40 American Black subjects with NIDDM, an apparent larger allele was found in two individuals. Both patients were shown to have in addition to a normal allele, a larger allele containing an 8-bp repeat, TGGTCTAA from positions -322 to -315 of the insulin promoter. To facilitate rapid screening for the 8-bp repeat, a high-resolution agarose gel electrophoretic analysis was adopted. DNA from American Black NIDDM subjects (n = 100) and nondiabetic subjects (n = 100) was PCR amplified and analyzed. The 8-bp repeat was present in five NIDDM subjects, and one nondiabetic subject. DNA from Mauritius Creoles, also of African ancestry, was analyzed, and the 8-bp repeat was present in 3 of 41 NIDDM subjects, and 0 of 41 nondiabetic subjects. Analysis of glucose metabolism in three presumed normal sibs of an NIDDM patient with an 8-bp repeat revealed that one sib had overt diabetes, and two sibs were glucose intolerant, but there was no consistent segregation of the insulin promoter variant with the diabetes phenotype. The variant promoter was not present in 35 Caucasian NIDDM patients or in 40 Pima Indians. To test the biological consequences of the 8-bp repeat sequence in the insulin promoter, a normal and variant promoter were subcloned into a luciferase plasmid, and reporter gene activity assessed by transient transfection into mouse insulinoma (beta TC1) and hamster insulinoma (HIT) cells. The promoter activity of the variant allele was found to be reduced to 37.9 +/- 10.3% of the activity of the normal promoter in HIT cells (P less than 0.01, n = 4), and 49.1 +/- 6.4% in beta TC1 cells (P less than 0.01, n = 6). These data thus suggest that a naturally occurring variant of the insulin promoter may contribute to the diabetes phenotype in 5-6% of Black NIDDM patients.
L Olansky, C Welling, S Giddings, S Adler, R Bourey, G Dowse, S Serjeantson, P Zimmet, M A Permutt
To examine the role of cytokines in mediating the lipogenic effects of endotoxin (LPS), we studied the effects of LPS and cytokines on hepatic fatty acid synthesis in LPS-sensitive C3H/OuJ mice and in LPS-resistant C3H/HeJ mice, whose macrophages are defective in the ability to produce tumor necrosis factor (TNF) and IL-1 in response to LPS. HeJ mice were 16-fold less sensitive than OuJ mice to the lipogenic effect of LPS. In OuJ mice, 10 micrograms of LPS caused a maximal increase in hepatic lipogenesis (3.86 +/- 0.41-fold), whereas in HeJ mice the maximal increase was only 1.79 +/- 0.32-fold after 100 micrograms of LPS. This lipogenic response paralleled the decreased ability of LPS to increase hepatic and splenic levels of mRNAs for TNF and IL-1 and serum levels of TNF in HeJ mice. In contrast, the maximal effect of TNF on lipogenesis was greater and the sensitivity to TNF was increased 2.4-fold in HeJ mice compared to OuJ mice. Administration of IFN-gamma before LPS in HeJ mice had no effect on IL-1 mRNA, but partially restored the LPS-induced increase in hepatic and splenic mRNA for TNF and serum TNF levels, which may account for the partial restoration of sensitivity to the lipogenic effect of LPS after IFN-gamma treatment. These results indicate that cytokines produced by mononuclear leukocytes mediate the lipogenic effects of LPS.
S Adi, A S Pollock, J K Shigenaga, A H Moser, K R Feingold, C Grunfeld
To estimate the regional subcutaneous glycerol production rate in normal and obese humans, the venous arterialized plasma glycerol, interstitial glycerol in the subcutaneous adipose tissue together with adipose tissue blood flow (ATBF, ml/100 g.min) were measured in the postabsorptive state and for 2 h after ingestion of 100 g of oral glucose. Eight lean and eight obese men with normal oral glucose tolerance tests were investigated with the subcutaneous microdialysis technique and 133Xe clearance. In the postabsorptive state, the interstitial glycerol concentrations in lean and obese subjects were 170 +/- 21 vs. 282 +/- 28 microM (P less than 0.01) and 156 +/- 23 vs. 225 +/- 12 microM (P less than 0.05) in the abdominal and femoral subcutaneous adipose tissue, respectively. The corresponding arterial glycerol levels were 54 +/- 4 vs. 75 +/- 14 microM (NS). Abdominal ATBF was greater in lean subjects (3.2 +/- 0.6 vs. 1.6 +/- 0.3; P less than 0.05), whereas femoral ATBF was similar in both groups (2.7 +/- 0.4 vs. 2.4 +/- 0.7). Estimated mean local glycerol release (mumol/100 g.min) was similar in the lean and obese group (0.16 +/- 0.03 vs. 0.20 +/- 0.05 and 0.18 +/- 0.02 vs. 0.17 +/- 0.04) in the abdominal and femoral site, respectively. We conclude that glycerol production from the subcutaneous tissue is increased in obesity, irrespective of adipose tissue distribution. This enhancement is due to the increased adipose tissue mass.
P A Jansson, A Larsson, U Smith, P Lönnroth
Oxidative modification of low density lipoprotein (LDL) renders it more atherogenic. Probucol, a highly nonpolar antioxidant, is transported in lipoproteins, including LDL, and inhibits oxidative modification of LDL in vitro. The ability of probucol to inhibit atherogenesis in the LDL receptor-deficient rabbit has been attributed to its antioxidant effect. We report synthesis of a new water-soluble analogue of probucol that is very effective in preventing cell-induced LDL oxidation. The polar probucol derivative, diglutaryl probucol, is efficiently taken up by endothelial cells and macrophages in culture and is hydrolyzed to release the active antioxidant, probucol. The treated cells, after thorough washing, show a marked decrease in their capacity to oxidize LDL during a subsequent incubation. At high concentrations of the derivative, the cells also released free probucol into the medium. Thus, the effectiveness of probucol in vivo may be related both to its presence in LDL, acting as a nonspecific antioxidant, and to an additional ability to inhibit cell-mediated oxidation of LDL by virtue of its uptake into cells.
S Parthasarathy
We have investigated the effect of cis-diamminedichloroplatinum(II) (CDDP) on signal transduction pathways. CDDP treatment did not cause any change in the binding of [3H]-phorbol dibutyrate to PC-9 (human lung adenocarcinoma cell line) cells, a measure of protein kinase C activation. However, 2-h CDDP treatment (20 micrograms/ml) caused approximately 200% increase in 1,2-sn-diacylglycerol (DAG) production and approximately 50% decrease in inositol 1,4,5-triphosphate production. To explore the different source of DAG, we analyzed phospholipids labeled with [14C]choline by TLC and revealed that [14C]choline-labeled phosphatidylcholine (PC) was decreased to 50% by CDDP treatment. This suggested that PC turnover was increased by CDDP-treatment. PC-specific phospholipase C (PC-PLC) activity was increased to 2.5-fold (2.58 +/- 0.28 nmol/mg protein per min) by 2 h CDDP (20 micrograms/ml) treatment compared with control (1.05 +/- 0.24 nmol/mg protein per min). Treatment of CDDP also stimulated PC-PLC in the crude membrane extract from PC-9 cells. CDDP had no effect on the activities of phospholipase A2 and D. Trans-DDP, which has far less cytotoxicity than its stereoisomer, CDDP, did not cause any change in PC-PLC activity. A significant inhibition of DNA synthesis (less than 80%) occurred 4 h after 2 h CDDP (20 micrograms/ml) treatment. These results demonstrated that CDDP-induced PC-PLC activation was an early event in CDDP-induced cytotoxicity and suggested that the effects of CDDP on signal transduction pathways had an important role in CDDP-induced cytotoxicity.
K Nishio, Y Sugimoto, Y Fujiwara, T Ohmori, T Morikage, Y Takeda, M Ohata, N Saijo
The development of pulmonary hypertension in hypoxic newborn calves is associated with a complex pattern of increased tropoelastin and type I procollagen synthesis and deposition by smooth muscle cells in large elastic pulmonary arteries compared to normoxic controls. We examined the possibility that transforming growth factor-beta 1 (TGF-beta 1) may be associated with the production of extracellular matrix protein in this model of pulmonary hypertension. Medial smooth muscle cells in both normotensive and hypertensive vessels, as assessed by immunohistochemistry, were the major source of TGF-beta 1. Staining was confined to foci of smooth muscle cells in the outer media and appeared greater in normotensive than hypertensive vessels. Consistent with the immunohistochemistry, a progressive, age-dependent increase in normotensive pulmonary artery TGF-beta 1 mRNA was observed after birth, whereas TGF-beta 1 mRNA remained at low, basal levels in hypertensive, remodeling pulmonary arteries. These observations suggest that local expression of TGF-beta 1 is not associated with increased extracellular matrix protein synthesis in this model of hypoxic pulmonary hypertension.
M D Botney, W C Parks, E C Crouch, K Stenmark, R P Mecham
Short-term cholesterol feeding has been shown to cause impaired vasodilatation in response to acetylcholine. The present study of renal hemodynamics was carried out to examine the role of thromboxane/PGH2 in mediating this abnormal response. In normal rats (ND), infusion of acetylcholine into the suprarenal aorta caused marked increases in renal blood flow, GFR, single nephron glomerular filtration rate, single nephron afferent plasma flow, and ultrafiltration coefficient, accompanied by a fall in preglomerular resistance. In cholesterol fed rats (CSD), the response to acetylcholine was markedly blunted. Infusion of L-arginine, the precursor to nitric oxide (NO), caused comparable renal vasodilatation in ND and CSD rats, implying that the ability to synthesize NO from its precursor was not severely impaired in the CSD animals. The observations do not exclude, however, the possibility of impaired synthesis of NO from endogenous precursor. In additional experiments, we infused a TxA2/PGH2 receptor antagonist in CSD rats and then administered acetylcholine. Renal vasodilatation occurred to a degree indistinguishable from that in ND rats given acetylcholine alone. When ND rats were infused with the same combination of the TxA2/PGH2 receptor antagonist and acetylcholine, renal vasodilatation was also significantly greater than with acetylcholine alone. This suggests that acetylcholine initiates release of vasoconstrictor prostanoids as well as NO from vascular endothelium. This was observed in ND as well as in CSD animals. Because LDL increases the supply of arachidonic acid for prostaglandin synthesis, we postulate that greater amounts of PGH2/TxA2 are synthesized via calcium activation of phospholipase A2 when acetylcholine is administered to CSD animals. This may account in large measure for the blunted vasodilatation to acetylcholine.
N Bank, H S Aynedjian
Polyethylene glycol (PEG)-modified bovine adenosine deaminase (ADA) is used for replacement therapy of severe combined immunodeficiency disease due to inherited ADA deficiency. We monitored IgG anti-ADA antibody in 17 patients treated by intramuscular injections of PEG-ADA for 1 to greater than 5.5 yr. ELISA-detectable anti-ADA IgG appeared in 10 patients, usually between the third and eighth months of treatment. Anti-ADA levels did not correlate with trough plasma ADA activity, which averaged 1.8-5 times normal blood (erythrocyte) ADA activity, depending on dose (15-60 U/kg per wk). ELISA-detectable anti-ADA antibodies were directed primarily at bovine-specific peptide (rather than PEG-containing) epitopes. Enhanced enzyme clearance, mediated by antibody that directly inhibited native and PEG-modified bovine ADA, and native, but not PEG-modified human ADA, occurred in two patients. In one, tolerance was induced; in the second, twice weekly injections of PEG-ADA compensated for accelerated clearance. We speculate that inhibitory antibodies recognize conserved, relatively PEG-free epitope(s) encompassing the active site, and that in human, but not bovine, ADA a PEG-attachment site "shields" the active site from immune recognition. We conclude that PEG-modification largely prevents the development of high affinity, or high levels of clearing antibodies to bovine ADA, and that PEG-modified human ADA should be further investigated as a possible treatment for ADA deficiency.
S Chaffee, A Mary, E R Stiehm, D Girault, A Fischer, M S Hershfield
High-titer IgG autoantibodies to the La/SS-B ribonucleoprotein (RNP) are a hallmark of patients with primary Sjogren's syndrome. Anti-La/SS-B-positive human sera bind to multiple epitopes on recombinant La/SS-B, although the initial response is against an immunodominant epitope within the first 107 NH2-terminal amino acids (aa). Sequence analysis has identified a striking homology between aa 88-101 in this NH2-terminal region of La/SS-B and a feline retroviral gag polypeptide suggesting the anti-La/SS-B response may be initiated by cross-reactivity with an exogenous agent. In the present study, detailed mapping of this NH2-terminal epitope, using recombinant La/SS-B purified from the expression of overlapping DNA fragments spanning aa 1-107, has shown that this immunodominant epitope is a complex conformational or discontinuous epitope dependent upon both aa 12-28 and 82-99 for expression, even though these regions share no homology with each other. This requirement questions the significance of the homology between La/SS-B and a retroviral gag polypeptide in the generation of the B cell response to La/SS-B and is in accord with the general concept that B cells recognize conformational epitopes on antigens rather than small linear peptide sequences. The finding also reinforces the notion that native autoantigen could be the initiator of the autoimmune response.
L J McNeilage, K Umapathysivam, E Macmillan, A Guidolin, S Whittingham, T Gordon
The proliferative effects of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) on human hematopoietic cells have been reported, but the intranuclear mechanism of early signal response to these mitogenic stimuli remains unknown. Using an established human myeloid leukemia cell line (NKM-1) which can grow in serum-free medium in response to G-CSF or M-CSF, we examined expressions of the jun family genes, c-jun, junB, and junD, which are coexpressed by various growth factors in many tissues. In parallel with regrowth from the G0/G1 resting state by addition of recombinant human G-CSF or M-CSF after serum deprivation, NKM-1 cells showed the transient expression of the junB gene with a peak of ninefold above the basal level between 40 and 60 min. In contrast, c-jun expression was not stimulated by these CSFs. JunD expression was constitutively observed at detectable levels. Furthermore, c-fos mRNA was rapidly induced to a peak of 14-fold after CSF stimulation. Transcriptional run-on assays revealed that treatment of serum-starved NKM-1 with 50 ng/ml G-CSF or M-CSF increased the transcription rate of the junB gene and the c-fos gene by 1.8-fold and 2.9-fold, respectively, but did not induce any transcript of the c-jun gene. The results indicate that the expression of the junB and c-fos genes is activated, at least in part, at the transcriptional level in response to these CSFs. These findings suggest that the signal activating c-jun expression might not be involved in the proliferative action of G-CSF and M-CSF but junB may be one of important elements in early response events of the signal transduction system in human CSF-responsive hematopoietic cells.
K Adachi, H Saito
Transforming growth factor beta (TGF beta) is a multifunctional protein which has been suggested to play a central role in the pathogenesis of chronic inflammation and fibrosis. Nasal polyposis is a condition affecting the upper airways characterized by the presence of chronic inflammation and varying degrees of fibrosis. To examine the potential role of TGF beta in the pathogenesis of this condition, we investigated gene expression and cytokine production in nasal polyp tissues as well as in the normal nasal mucosa. By Northern blot analysis using a porcine TGF beta 1 cDNA probe, we detected TGF beta 1-specific mRNA in nasal polyp tissues, as well as in the tissue from a patient with allergic rhinitis, but not in the normal nasal mucosa. By the combination of tissue section staining with chromotrope 2R with in situ hybridization using the same TGF beta 1 probe, we found that approximately 50% of the eosinophils infiltrating the polyp tissue express the TGF beta 1 gene. In addition, immunohistochemical localization of TGF beta 1 was detected associated with extracellular matrix as well as in cells in the stroma. These results suggest that in nasal polyposis where eosinophils are the most prevalent inflammatory cell, TGF beta 1 synthesized by these cells may contribute to the structural abnormalities such as stromal fibrosis and basement membrane thickening which characterize this disease.
I Ohno, R G Lea, K C Flanders, D A Clark, D Banwatt, J Dolovich, J Denburg, C B Harley, J Gauldie, M Jordana
Interleukin-2 was recently shown to cause acute lung injury characterized by microvascular permeability defect, interstitial edema, and leukosequestration. Similar responses can also be produced by platelet activating factor (PAF). Thus, the present study aimed to examine whether PAF plays a key role in the development of IL-2-induced lung injury in the anesthetized rat. Intravenous infusion (60 min) of recombinant human IL-2 at 10(5)-10(6) U/rat (n = 7-9) dose-dependently elevated lung water content (27 +/- 1%, P less than 0.01), myeloperoxidase activity (+84 +/- 23%, P less than 0.05), and serum thromboxane B2 (990 +/- 70%, P less than 0.01), but failed to alter blood pressure, hematocrit, serum tumor necrosis factor-alpha, and circulating leukocytes and platelets. Pretreatment (-30 min) with a potent and specific PAF antagonist, BN 50739 (10 mg/kg, intraperitoneally, n = 6) prevented the pulmonary edema (P less than 0.05) and thromboxane B2 production (P less than 0.01), and attenuated the elevation of lung myeloperoxidase activity (+18 +/- 16%, P less than 0.05) induced by IL-2. These data suggest that PAF is involved in the pathophysiological processes leading to IL-2-induced lung injury, and point to the potential therapeutic capacity of PAF antagonists in preventing pulmonary edema during IL-2 therapy.
R Rabinovici, M D Sofronski, J F Renz, L M Hillegas, K M Esser, J Vernick, G Feuerstein
To examine the associations among fibrillin gene mutations, protein function, and Marfan syndrome phenotype, we screened for alterations in the fibrillin coding sequence in patients with a range of manifestations and clinical severity. A cysteine to serine substitution at codon 1409 (C1409S) was identified in an epidermal growth factor (EGF)-like motif from one fibrillin allele which segregates with the disease phenotype through three generations of a family affected with the Marfan syndrome. This alteration was not observed in 60 probands from other families or in 88 unrelated normal individuals. The altered cysteine is completely conserved in all EGF-like motifs identified in fibrillin, and in all proteins that contain this motif. These observations strongly indicate that C1409S is the disease-producing mutation in this family. The phenotype of individuals carrying C1409S varied widely with respect to onset of disease, organ-system involvement, and clinical severity; certain affected adults were unaware of their status before being diagnosed through this investigation. We conclude that fibrillin gene defects cause familial Marfan syndrome, that mutations in the EGF-like motif of the fibrillin gene are not uniformly associated with severe disease, and that fibrillin genotype is not the sole determinant of Marfan phenotype.
H C Dietz, R E Pyeritz, E G Puffenberger, R J Kendzior Jr, G M Corson, C L Maslen, L Y Sakai, C A Francomano, G R Cutting
In this report we describe an experimental model of cachexia that fulfills the criteria of an early effect with a small tumor mass not related to the growth rate of the tumor, and progressive wasting of muscle and fat without a detectable loss of appetite. C-26.IVX is a cell line derived from murine colon-26 adenocarcinoma which retains the transplantability of the original tumor and induces true cachexia in syngeneic hosts. Evidence is presented to support a role for interleukin (IL-6) as a cachectic factor in the development of cancer cachexia in this model system. Thus, increasing levels of IL-6 in C-26.IVX-bearing mice correlate with the development of cachexia. If the primary tumors were resected, mice gained weight and the levels of IL-6 in the serum were reduced significantly. Moreover, monoclonal antibody to murine IL-6 (but not anti-tumor necrosis factor antibody) was able to significantly suppress the development of key parameters of cachexia in tumor bearing mice.
G Strassmann, M Fong, J S Kenney, C O Jacob
Expression of major stress proteins is induced rapidly in ischemic tissues, a response that may protect cells from ischemic injury. We have shown previously that transcriptional induction of heat-shock protein 70 by hypoxia results from activation of DNA binding of a preexisting, but inactive, pool of heat shock factor (HSF). To determine the intracellular signals generated in hypoxic or ischemic cells that trigger HSF activation, we examined the effects of glucose deprivation and the metabolic inhibitor rotenone on DNA-binding activity of HSF in cultured C2 myogenic cells grown under normoxic conditions. Whole-cell extracts were examined in gel mobility shift assays using a 39-bp synthetic oligonucleotide containing a consensus heat-shock element as probe. ATP pools were determined by high-pressure liquid chromatography and intracellular pH (pHi) was measured using a fluorescent indicator. Glucose deprivation alone reduced the cellular ATP pool to 50% of control levels but failed to activate HSF. However, 2 x 10(-4) M rotenone induced DNA binding of HSF within 30 min, in association with a fall in ATP to 30% of control levels, and a fall in pHi from 7.3 to 6.9. Maneuvers (sodium propionate and amiloride) that lowered pHi to 6.7 without ATP depletion failed to activate HSF. Conversely, in studies that lowered ATP stores at normal pH (high K+/nigericin) we found induction of HSF-DNA binding activity. Our data indicate that the effects of ATP depletion alone are sufficient to induce the DNA binding of HSF when oxidative metabolism is impaired, and are consistent with a model proposed recently for transcriptional regulation of stress protein genes during ischemia.
I J Benjamin, S Horie, M L Greenberg, R J Alpern, R S Williams
The presence of soluble tumor necrosis factor (TNF) binding proteins (BP) was investigated in the sera of healthy volunteer blood donors and cancer patients. Two distinct types of TNFBP, types A and B, which are immunologically related to the cellular 75-kD TNF receptor (TNFR) and the cellular 55-kD TNFR, respectively, were assessed by immunoassays using nonblocking anti-receptor antibodies and 125I-recombinant human TNF alpha. As compared to the titers observed in 25 healthy controls, TNFBP types A and B titers were found to be elevated in almost all sera obtained from patients with underlying malignant disease. The highest amounts of TNFBP were seen in the sera of patients with B cell malignancies including hairy cell leukemia (HCL) and type B chronic lymphocytic leukemia. Treatment of HCL patients with recombinant human interferon-alpha was associated with decrease of circulating TNFBP.
W Digel, F Porzsolt, M Schmid, F Herrmann, W Lesslauer, M Brockhaus