Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 17 patents
5 readers on Mendeley
  • Article usage
  • Citations to this article (26)

Advertisement

Research Article Free access | 10.1172/JCI115765

Platelet activating factor mediates interleukin-2-induced lung injury in the rat.

R Rabinovici, M D Sofronski, J F Renz, L M Hillegas, K M Esser, J Vernick, and G Feuerstein

Department of Surgery, Jefferson Medical College, Philadelphia, Pennsylvania 19107-5083.

Find articles by Rabinovici, R. in: PubMed | Google Scholar

Department of Surgery, Jefferson Medical College, Philadelphia, Pennsylvania 19107-5083.

Find articles by Sofronski, M. in: PubMed | Google Scholar

Department of Surgery, Jefferson Medical College, Philadelphia, Pennsylvania 19107-5083.

Find articles by Renz, J. in: PubMed | Google Scholar

Department of Surgery, Jefferson Medical College, Philadelphia, Pennsylvania 19107-5083.

Find articles by Hillegas, L. in: PubMed | Google Scholar

Department of Surgery, Jefferson Medical College, Philadelphia, Pennsylvania 19107-5083.

Find articles by Esser, K. in: PubMed | Google Scholar

Department of Surgery, Jefferson Medical College, Philadelphia, Pennsylvania 19107-5083.

Find articles by Vernick, J. in: PubMed | Google Scholar

Department of Surgery, Jefferson Medical College, Philadelphia, Pennsylvania 19107-5083.

Find articles by Feuerstein, G. in: PubMed | Google Scholar

Published May 1, 1992 - More info

Published in Volume 89, Issue 5 on May 1, 1992
J Clin Invest. 1992;89(5):1669–1673. https://doi.org/10.1172/JCI115765.
© 1992 The American Society for Clinical Investigation
Published May 1, 1992 - Version history
View PDF
Abstract

Interleukin-2 was recently shown to cause acute lung injury characterized by microvascular permeability defect, interstitial edema, and leukosequestration. Similar responses can also be produced by platelet activating factor (PAF). Thus, the present study aimed to examine whether PAF plays a key role in the development of IL-2-induced lung injury in the anesthetized rat. Intravenous infusion (60 min) of recombinant human IL-2 at 10(5)-10(6) U/rat (n = 7-9) dose-dependently elevated lung water content (27 +/- 1%, P less than 0.01), myeloperoxidase activity (+84 +/- 23%, P less than 0.05), and serum thromboxane B2 (990 +/- 70%, P less than 0.01), but failed to alter blood pressure, hematocrit, serum tumor necrosis factor-alpha, and circulating leukocytes and platelets. Pretreatment (-30 min) with a potent and specific PAF antagonist, BN 50739 (10 mg/kg, intraperitoneally, n = 6) prevented the pulmonary edema (P less than 0.05) and thromboxane B2 production (P less than 0.01), and attenuated the elevation of lung myeloperoxidase activity (+18 +/- 16%, P less than 0.05) induced by IL-2. These data suggest that PAF is involved in the pathophysiological processes leading to IL-2-induced lung injury, and point to the potential therapeutic capacity of PAF antagonists in preventing pulmonary edema during IL-2 therapy.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1669
page 1669
icon of scanned page 1670
page 1670
icon of scanned page 1671
page 1671
icon of scanned page 1672
page 1672
icon of scanned page 1673
page 1673
Version history
  • Version 1 (May 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (26)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 17 patents
5 readers on Mendeley
See more details