Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (91)

Advertisement

Research Article Free access | 10.1172/JCI115740

Intracellular signaling in the regulation of renal Na-K-ATPase. I. Role of cyclic AMP and phospholipase A2.

T Satoh, H T Cohen, and A I Katz

Department of Medicine, University of Chicago Pritzker School of Medicine, Illinois 60637.

Find articles by Satoh, T. in: PubMed | Google Scholar

Department of Medicine, University of Chicago Pritzker School of Medicine, Illinois 60637.

Find articles by Cohen, H. in: PubMed | Google Scholar

Department of Medicine, University of Chicago Pritzker School of Medicine, Illinois 60637.

Find articles by Katz, A. in: PubMed | Google Scholar

Published May 1, 1992 - More info

Published in Volume 89, Issue 5 on May 1, 1992
J Clin Invest. 1992;89(5):1496–1500. https://doi.org/10.1172/JCI115740.
© 1992 The American Society for Clinical Investigation
Published May 1, 1992 - Version history
View PDF
Abstract

We have reported that dopamine (DA) inhibits Na-K-ATPase activity in the cortical collecting duct (CCD) by stimulating the DA1 receptor, and the present study was designed to evaluate the mechanism of this effect. Short-term exposure (15-30 min) of microdissected rat CCD to DA, a DA1 agonist (fenoldopam), vasopressin (AVP), forskolin, or dibutyryl cAMP (dBcAMP), which increase cAMP content by different mechanisms, strongly (approximately 60%) inhibited Na-K-ATPase activity. 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase, completely blocked Na-K-ATPase inhibition by DA or fenoldopam, and IP20, an inhibitor peptide of cAMP-dependent protein kinase A (PKA), abolished the Na:K pump effect of all the cAMP agonists listed above. To verify whether the mechanism of pump inhibition by agents that increase cell cAMP involves phospholipase A2 (PLA2), we used mepacrine, a PLA2 inhibitor, which also abolished Na-K-ATPase inhibition by DA or fenoldopam, as well as by AVP, forskolin, or dBcAMP. Arachidonic acid (10(-7) - 10(-4) M) inhibited Na-K-ATPase activity in dose-dependent fashion. Corticosterone, which induces lipomodulin, a PLA2 inhibitor protein inactivated by PKA, equally abolished the pump effects of DA, fenoldopam, forskolin, and dBcAMP, suggesting that lipomodulin might act between PKA and PLA2 in cAMP-dependent pump regulation. We conclude that dopamine inhibits Na-K-ATPase activity in the CCD through a DA1 receptor-mediated cAMP-PKA pathway that involves the stimulation of PLA2 and arachidonic acid release, possibly mediated by inactivation of lipomodulin. This pathway is shared by other agonists that increase cell cAMP and thus stimulate PKA activity.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1496
page 1496
icon of scanned page 1497
page 1497
icon of scanned page 1498
page 1498
icon of scanned page 1499
page 1499
icon of scanned page 1500
page 1500
Version history
  • Version 1 (May 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (91)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts