Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Eupatilin rescues ciliary transition zone defects to ameliorate ciliopathy-related phenotypes
Yong Joon Kim, … , Ho Jeong Kwon, Joon Kim
Yong Joon Kim, … , Ho Jeong Kwon, Joon Kim
Published July 23, 2018
Citation Information: J Clin Invest. 2018;128(8):3642-3648. https://doi.org/10.1172/JCI99232.
View: Text | PDF
Concise Communication Development Ophthalmology

Eupatilin rescues ciliary transition zone defects to ameliorate ciliopathy-related phenotypes

  • Text
  • PDF
Abstract

Ciliopathies are clinically overlapping genetic disorders involving structural and functional abnormalities of cilia. Currently, there are no small-molecule drugs available to treat ciliary defects in ciliopathies. Our phenotype-based screen identified the flavonoid eupatilin and its analogs as lead compounds for developing ciliopathy medication. CEP290, a gene mutated in several ciliopathies, encodes a protein that forms a complex with NPHP5 to support the function of the ciliary transition zone. Eupatilin relieved ciliogenesis and ciliary receptor delivery defects resulting from deletion of CEP290. In rd16 mice harboring a blinding Cep290 in-frame deletion, eupatilin treatment improved both opsin transport to the photoreceptor outer segment and electrophysiological responses of the retina to light stimulation. The rescue effect was due to eupatilin-mediated inhibition of calmodulin binding to NPHP5, which promoted NPHP5 recruitment to the ciliary base. Our results suggest that deficiency of a ciliopathy protein could be mitigated by small-molecule compounds that target other ciliary components that interact with the ciliopathy protein.

Authors

Yong Joon Kim, Sungsoo Kim, Yooju Jung, Eunji Jung, Ho Jeong Kwon, Joon Kim

×

Full Text PDF

Download PDF (4.90 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts