Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

A leptin-regulated circuit controls glucose mobilization during noxious stimuli
Jonathan N. Flak, … , Kamal Rahmouni, Martin G. Myers Jr.
Jonathan N. Flak, … , Kamal Rahmouni, Martin G. Myers Jr.
Published July 17, 2017
Citation Information: J Clin Invest. 2017;127(8):3103-3113. https://doi.org/10.1172/JCI90147.
View: Text | PDF
Research Article Endocrinology Neuroscience Article has an altmetric score of 6

A leptin-regulated circuit controls glucose mobilization during noxious stimuli

  • Text
  • PDF
Abstract

Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor–expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores.

Authors

Jonathan N. Flak, Deanna Arble, Warren Pan, Christa Patterson, Thomas Lanigan, Paulette B. Goforth, Jamie Sacksner, Maja Joosten, Donald A. Morgan, Margaret B. Allison, John Hayes, Eva Feldman, Randy J. Seeley, David P. Olson, Kamal Rahmouni, Martin G. Myers Jr.

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 2019 2018 Total
Citations: 1 5 1 1 2 4 2 7 23
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2020 (4)

Title and authors Publication Year
Ventromedial hypothalamic nucleus neuronal subset regulates blood glucose independently of insulin
Jonathan N. Flak, Paulette Goforth, James Dell'Orco, Paul V. Sabatini, Chien Li, Nadejda Bozadjieva, Matthew J. Sorensen, Alec C. Valenta, Alan C. Rupp, Alison H. Affinati, Corentin Cras-Méneur, Ahsan Ansari, Jamie Sacksner, Nandan Kodur, Darleen A. Sandoval, Robert t. Kennedy, David Olson, Martin G. Myers Jr.
Journal of Clinical Investigation 2020
Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding
W Cheng, I Gonzalez, W Pan, AH Tsang, J Adams, E Ndoka, D Gordian, B Khoury, K Roelofs, SS Evers, A MacKinnon, S Wu, H Frikke-Schmidt, JN Flak, JL Trevaskis, CJ Rhodes, S Fukada, RJ Seeley, DA Sandoval, DP Olson, C Blouet, MG Myers
Cell Metabolism 2020
Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism
S Pereira, DL Cline, MM Glavas, SD Covey, TJ Kieffer
Endocrine reviews 2020
Profound and redundant functions of arcuate neurons in obesity development
C Zhu, Z Jiang, Y Xu, ZL Cai, Q Jiang, Y Xu, M Xue, BR Arenkiel, Q Wu, G Shu, Q Tong
2020

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 11 X users
45 readers on Mendeley
See more details