Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Video abstracts

In this video collection, authors of findings published in The Journal of Clinical Investigation present personally guided tours of their results. The journal accepts video submissions from authors of recently accepted manuscripts. Instructions can be found on the Video Abstracts Guidelines page.

β-globin gene transfer in human bone marrow for sickle cell disease

In this episode of JCI's Author's Take, Donald Kohn of UCLA describes his group's efforts to develop a method to safely and effectively modify patient bone marrow to treat sickle cell disease. Sickle cell disease (SCD) is an autosomal recessive disorder caused by mutations in hemoglobin (HBB) that leads to rigid, deformed red blood cells, as seen in the accompanying image. A small number of patients have been successfully treated with allogeneic hematopoietic stem cell (HSC) transplantation; however, there are several drawbacks and complications associated with this procedure. Many complications could potentially be avoided by performing an autologous HSC transplant in combination with gene therapy to over-ride the defective hemoglobin gene. Zulema Romero, Donald Kohn, and colleagues investigated the utility of a lentiviral vector encoding a human b-globin gene engineered to impede sickle hemoglobin polymerization. The vector efficiently transduced bone marrow cells from SCD patients and expressed the engineered globin gene to prevent sickling of red blood cells and the transduced cells were successfully transplanted into immunocompromised mice, indicating that this method could potentially be used to treat SCD.


Transcription factor ATF3 links host adaptive response to breast cancer metastasis

Tsonwin Hai and colleagues discuss how the transcription factor ATF3 acts as a key regulator of the host immune response and as a contributor to co-option of the host by cancer cells to promote metastasis. Highlights:

  • ATF3 is expressed in immune mononuclear cells in human breast tumors and is associated with worse clinical outcomes.
  • Host ATF3 expression facilitates breast cancer metastasis.
  • ATF3 alters the host systemic environment, increasing the number of tumor-associated macrophages.
  • Cancer-induced ATF3 expression in mononuclear cells alters gene expression and bioactivity to contribute to host-enhanced metastasis.

Reducing TMPRSS6 ameliorates hemochromatosis and beta-thalassemia in mice

Brett Monia and Stefano Rivella discuss how reduction of TMPRSS6 expression with antisense oligonucleotides ameliorates iron metabolism disorders in mice. Highlights:

  • Iron metabolism is a complex and heavily regulated process that is required for basic physiological functions, including hematopoiesis and host immune responses.
  • Hemochromatosis and β-thalassemia are iron overload disorders caused by low levels of hepcidin, the hormone that regulates iron absorption.
  • Antisense oligonucleotides (ASOs) lowered Tmprss6 RNA and elevated hepcidin levels.
  • TMPRSS6 ASO treatment reversed anemia and iron overload in a mouse model of β-thalassemia.

The TGR5 receptor mediates bile acid-induced itch and analgesia

The liver secretes bile acids to aid in the digestion of fats. Cholestasis is a condition in which the bile flow from the liver to the duodenum is impeded. Patients with the disease exhibit itchiness (pruritis) and cannot sense pain (analgesia). The molecular mechanisms mediating these effects are unknown. Carlos Corvera of UCSF and Nigel Bunnett of Monash University discuss their study demonstrating that bile acids cause itch and analgesia by activating the TGR5 receptor in neurons. Highlights:

  • TGR5 is expressed in neurons in mouse dorsal root ganglia and spinal cord, which transmit itch and pain signals.
  • Stimulation of TGR5 induced the release of itch and analgesia transmitting molecules, including gastrin-releasing peptide and leucine-enkephalin.
  • Intradermal injection of bile acids stimulated scratching behavior that was TGR5-dependent.
  • Bile acids activate TGR5 on sensory nerves to transmit itch and analgesia, suggesting that these mechanisms contribute to pruritus and analgesia during cholestatic liver diseases.

Increased brain uptake and oxidation of acetate in heavy drinkers

Increased brain uptake and oxidation of acetate in heavy drinkers Graeme Mason of Yale University discusses how heavy drinking influences metabolism and leads to alternate fuel use in the brain. Highlights:

  • Brain acetate consumption is inducible by conditions that can occur with heavy alcohol use.
  • Heavy drinking is associated with enhanced ability to import and oxidize acetate.
  • Systemic acetate provides a potential metabolic reward for drinking, possibly specific to glia.
  • Acetate oxidation provides a mechanism to generate adenosine, whose loss may contribute to withdrawal symptoms.

Spanish and Portuguese versions are also available.

  • ← Previous
  • 1
  • 2
  • …
  • 35
  • 36
  • 37
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts