Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Nephrology

  • 276 Articles
  • 11 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 26
  • 27
  • 28
  • Next →
Induction of B7-1 in podocytes is associated with nephrotic syndrome
Jochen Reiser, … , Jordan A. Kreidberg, Peter Mundel
Jochen Reiser, … , Jordan A. Kreidberg, Peter Mundel
Published May 15, 2004
Citation Information: J Clin Invest. 2004;113(10):1390-1397. https://doi.org/10.1172/JCI20402.
View: Text | PDF

Induction of B7-1 in podocytes is associated with nephrotic syndrome

  • Text
  • PDF
Abstract

Kidney podocytes and their slit diaphragms form the final barrier to urinary protein loss. This explains why podocyte injury is typically associated with nephrotic syndrome. The present study uncovered an unanticipated novel role for costimulatory molecule B7-1 in podocytes as an inducible modifier of glomerular permselectivity. B7-1 in podocytes was found in genetic, drug-induced, immune-mediated, and bacterial toxin–induced experimental kidney diseases with nephrotic syndrome. The clinical significance of our results is underscored by the observation that podocyte expression of B7-1 correlated with the severity of human lupus nephritis. In vivo, exposure to low-dose LPS rapidly upregulates B7-1 in podocytes of WT and SCID mice, leading to nephrotic-range proteinuria. Mice lacking B7-1 are protected from LPS-induced nephrotic syndrome, suggesting a link between podocyte B7-1 expression and proteinuria. LPS signaling through toll-like receptor-4 reorganized the podocyte actin cytoskeleton in vitro, and activation of B7-1 in cultured podocytes led to reorganization of vital slit diaphragm proteins. In summary, upregulation of B7-1 in podocytes may contribute to the pathogenesis of proteinuria by disrupting the glomerular filter and provides a novel molecular target to tackle proteinuric kidney diseases. Our findings suggest a novel function for B7-1 in danger signaling by nonimmune cells.

Authors

Jochen Reiser, Gero von Gersdorff, Martin Loos, Jun Oh, Katsuhiko Asanuma, Laura Giardino, Maria Pia Rastaldi, Novella Calvaresi, Haruko Watanabe, Karin Schwarz, Christian Faul, Matthias Kretzler, Anne Davidson, Hikaru Sugimoto, Raghu Kalluri, Arlene H. Sharpe, Jordan A. Kreidberg, Peter Mundel

×

Mutation of hepatocyte nuclear factor–1β inhibits Pkhd1 gene expression and produces renal cysts in mice
Thomas Hiesberger, … , Stefan Somlo, Peter Igarashi
Thomas Hiesberger, … , Stefan Somlo, Peter Igarashi
Published March 15, 2004
Citation Information: J Clin Invest. 2004;113(6):814-825. https://doi.org/10.1172/JCI20083.
View: Text | PDF

Mutation of hepatocyte nuclear factor–1β inhibits Pkhd1 gene expression and produces renal cysts in mice

  • Text
  • PDF
Abstract

Hepatocyte nuclear factor–1β (HNF-1β) is a Pit-1, Oct-1/2, UNC-86 (POU)/homeodomain-containing transcription factor that regulates tissue-specific gene expression in the liver, kidney, and other organs. Humans with autosomal dominant mutations of HNF-1β develop maturity-onset diabetes of the young type 5 (MODY5) and congenital cystic abnormalities of the kidney. Autosomal recessive polycystic kidney disease (ARPKD) is an inherited cystic disorder that produces renal failure in infants and children and is caused by mutations of PKHD1. The proximal promoter of the mouse Pkhd1 gene contains an evolutionarily conserved HNF-1–binding site that is located near a region of deoxyribonuclease hypersensitivity. HNF-1β and the structurally related HNF-1α bind specifically to the Pkhd1 promoter and stimulate gene transcription. Mutations of the HNF-1 site or expression of a dominant-negative HNF-1β mutant inhibit Pkhd1 promoter activity in transfected cells. Transgenic mice expressing a dominant-negative HNF-1β mutant under the control of a kidney-specific promoter develop renal cysts, similarly to humans with MODY5. Pkhd1 transcripts are absent in the cells lining the cysts but are present in morphologically normal surrounding tubules. These studies identify a link between two cystic disease genes, HNF1β (MODY5) and PKHD1 (ARPKD). HNF-1β directly regulates the transcription of Pkhd1, and inhibition of PKHD1 gene expression may contribute to the formation of renal cysts in humans with MODY5.

Authors

Thomas Hiesberger, Yun Bai, Xinli Shao, Brian T. McNally, Angus M. Sinclair, Xin Tian, Stefan Somlo, Peter Igarashi

×

Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis
Yingjian Li, … , Chuanyue Wu, Youhua Liu
Yingjian Li, … , Chuanyue Wu, Youhua Liu
Published February 1, 2004
Citation Information: J Clin Invest. 2004;113(3):491-491. https://doi.org/10.1172/JCI17913C1.
View: Text | PDF | Amended Article

Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis

  • Text
  • PDF
Abstract

Authors

Yingjian Li, Junwei Yang, Chunsun Dai, Chuanyue Wu, Youhua Liu

×

Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction
Misako Sato, … , Anita B. Roberts, Akira Ooshima
Misako Sato, … , Anita B. Roberts, Akira Ooshima
Published November 15, 2003
Citation Information: J Clin Invest. 2003;112(10):1486-1494. https://doi.org/10.1172/JCI19270.
View: Text | PDF

Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction

  • Text
  • PDF
Abstract

Tubulointerstitial fibrosis is the final common result of a variety of progressive injuries leading to chronic renal failure. Transforming growth factor-β (TGF-β) is reportedly upregulated in response to injurious stimuli such as unilateral ureteral obstruction (UUO), causing renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. We now show that mice lacking Smad3 (Smad3ex8/ex8), a key signaling intermediate downstream of the TGF-β receptors, are protected against tubulointerstitial fibrosis following UUO as evidenced by blocking of EMT and abrogation of monocyte influx and collagen accumulation. Culture of primary renal tubular epithelial cells from wild-type or Smad3-null mice confirms that the Smad3 pathway is essential for TGF-β1–induced EMT and autoinduction of TGF-β1. Moreover, mechanical stretch of the cultured epithelial cells, mimicking renal tubular distention due to accumulation of urine after UUO, induces EMT following Smad3-mediated upregulation of TGF-β1. Exogenous bone marrow monocytes accelerate EMT of the cultured epithelial cells and renal tubules in the obstructed kidney after UUO dependent on Smad3 signaling. Together the data demonstrate that the Smad3 pathway is central to the pathogenesis of interstitial fibrosis and suggest that inhibitors of this pathway may have clinical application in the treatment of obstructive nephropathy.

Authors

Misako Sato, Yasuteru Muragaki, Shizuya Saika, Anita B. Roberts, Akira Ooshima

×

JunD protects against chronic kidney disease by regulating paracrine mitogens
Evangéline Pillebout, … , Gérard Friedlander, Fabiola Terzi
Evangéline Pillebout, … , Gérard Friedlander, Fabiola Terzi
Published September 15, 2003
Citation Information: J Clin Invest. 2003;112(6):843-852. https://doi.org/10.1172/JCI17647.
View: Text | PDF

JunD protects against chronic kidney disease by regulating paracrine mitogens

  • Text
  • PDF
Abstract

The AP-1 transcription factor, composed of Jun and Fos proteins, plays a crucial role in the fine tuning of cell proliferation. We showed previously that AP-1 complexes are activated during the proliferative response that parallels the development of renal lesions after nephron reduction, but little is known about the specific role of individual Jun/Fos components in the deterioration process. Here we used JunD knockout (JunD–/–) mice and an experimental model of chronic renal injury (75% nephron reduction) to explore the role of JunD. Nephron reduction resulted in an initial compensatory growth phase that did not require JunD. JunD, however, was essential to inhibit a second wave of cell proliferation and to halt the development of severe glomerular sclerosis, tubular dilation, and interstitial fibrosis. We show that the effects of junD inactivation are not cell autonomous and involve upregulation of the paracrine mitogen, TGF-α. Expression of a transgene (REM) encoding a dominant negative isoform of the EGFR, the receptor for TGF-α, prevented the second wave of cell proliferation and the development of renal lesions in bitransgenic JunD–/–/REM mice. We propose that JunD is part of a regulatory network that controls proliferation to prevent pathological progression in chronic renal diseases.

Authors

Evangéline Pillebout, Jonathan B. Weitzman, Martine Burtin, Carla Martino, Pierre Federici, Moshe Yaniv, Gérard Friedlander, Fabiola Terzi

×

Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent
Theresa Berndt, … , Susan C. Schiavi, Rajiv Kumar
Theresa Berndt, … , Susan C. Schiavi, Rajiv Kumar
Published September 1, 2003
Citation Information: J Clin Invest. 2003;112(5):785-794. https://doi.org/10.1172/JCI18563.
View: Text | PDF

Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent

  • Text
  • PDF
Abstract

Tumors associated with osteomalacia elaborate the novel factor(s), phosphatonin(s), which causes phosphaturia and hypophosphatemia by cAMP-independent pathways. We show that secreted frizzled-related protein-4 (sFRP-4), a protein highly expressed in such tumors, is a circulating phosphaturic factor that antagonizes renal Wnt-signaling. In cultured opossum renal epithelial cells, sFRP-4 specifically inhibited sodium-dependent phosphate transport. Infusions of sFRP-4 in normal rats over 2 hours specifically increased renal fractional excretion of inorganic phosphate (FEPi) from 14% ± 2% to 34% ± 5% (mean ± SEM, P < 0.01). Urinary cAMP and calcium excretion were unchanged. In thyro-parathyroidectomized rats, sFRP-4 increased FEPi from 0.7% ± 0.2% to 3.8% ± 1.2% (P < 0.05), demonstrating that sFRP-4 inhibits renal inorganic phosphate reabsorption by PTH-independent mechanisms. Administration of sFRP-4 to intact rats over 8 hours increased FEPi, decreased serum phosphate (1.95 ± 0.1 to 1.53 ± 0.09 mmol/l, P < 0.05) but did not alter serum 1α, 25-dihydroxyvitamin D, renal 25-hydroxyvitamin D 1α-hydroxylase cytochrome P450, and sodium-phosphate cotransporter mRNA concentrations. Infusion of sFRP-4 antagonizes Wnt action as demonstrated by reduced renal β-catenin and increased phosphorylated β-catenin concentrations. The sFRP-4 is detectable in normal human serum and in the serum of a patient with tumor-induced osteomalacia. Thus, sFRP-4 displays phosphatonin-like properties, because it is a circulating protein that promotes phosphaturia and hypophosphatemia and blunts compensatory increases in 1α, 25-dihydroxyvitamin D.

Authors

Theresa Berndt, Theodore A. Craig, Ann E. Bowe, John Vassiliadis, David Reczek, Richard Finnegan, Suzanne M. Jan De Beur, Susan C. Schiavi, Rajiv Kumar

×

Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis
Yingjian Li, … , Chuanyue Wu, Youhua Liu
Yingjian Li, … , Chuanyue Wu, Youhua Liu
Published August 15, 2003
Citation Information: J Clin Invest. 2003;112(4):503-516. https://doi.org/10.1172/JCI17913.
View: Text | PDF | Corrigendum

Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis

  • Text
  • PDF
Abstract

Under pathologic conditions, renal tubular epithelial cells can undergo epithelial to mesenchymal transition (EMT), a phenotypic conversion that is believed to play a critical role in renal interstitial fibrogenesis. However, the underlying mechanism that governs this process remains largely unknown. Here we demonstrate that integrin-linked kinase (ILK) plays an important role in mediating tubular EMT induced by TGF-β1. TGF-β1 induced ILK expression in renal tubular epithelial cells in a time- and dose-dependent manner, which was dependent on intracellular Smad signaling. Forced expression of ILK in human kidney proximal tubular epithelial cells suppressed E-cadherin expression and induced fibronectin expression and its extracellular assembly. ILK also induced MMP-2 expression and promoted cell migration and invasion in Matrigel. Conversely, ectopic expression of a dominant-negative, kinase-dead form of ILK largely abrogated TGF-β1–initiated tubular cell phenotypic conversion. In vivo, ILK was markedly induced in renal tubular epithelia in mouse models of chronic renal diseases, and such induction was spatially and temporally correlated with tubular EMT. Moreover, inhibition of ILK expression by HGF was associated with blockade of tubular EMT and attenuation of renal fibrosis. These findings suggest that ILK is a critical mediator for tubular EMT and likely plays a crucial role in the pathogenesis of chronic renal fibrosis.

Authors

Yingjian Li, Junwei Yang, Chunsun Dai, Chuanyue Wu, Youhua Liu

×

Collecting duct–specific gene inactivation of αENaC in the mouse kidney does not impair sodium and potassium balance
Isabelle Rubera, … , Edith Hummler, Bernard C. Rossier
Isabelle Rubera, … , Edith Hummler, Bernard C. Rossier
Published August 15, 2003
Citation Information: J Clin Invest. 2003;112(4):554-565. https://doi.org/10.1172/JCI16956.
View: Text | PDF

Collecting duct–specific gene inactivation of αENaC in the mouse kidney does not impair sodium and potassium balance

  • Text
  • PDF
Abstract

Aldosterone controls the final sodium reabsorption and potassium secretion in the kidney by regulating the activity of the epithelial sodium channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN). ASDN consists of the last portion of the distal convoluted tubule (late DCT), the connecting tubule (CNT), and the collecting duct (CD) (i.e., the cortical CD [CCD] and the medullary CD [MCD]). It has been proposed that the control of sodium transport in the CCD is essential for achieving sodium and potassium balance. We have tested this hypothesis by inactivating the α subunit of ENaC in the CD but leaving ENaC expression in the late DCT and CNT intact. Under salt restriction or under aldosterone infusion, whole-cell voltage clamp of principal cells of CCD showed no detectable ENaC activity, whereas large amiloride-sensitive currents were observed in control littermates. The animals survive well and are able to maintain sodium and potassium balance, even when challenged by salt restriction, water deprivation, or potassium loading. We conclude that the expression of ENaC in the CD is not a prerequisite for achieving sodium and potassium balance in mice. This stresses the importance of more proximal nephron segments (late DCT/CNT) to achieve sodium and potassium balance.

Authors

Isabelle Rubera, Johannes Loffing, Lawrence G. Palmer, Gustavo Frindt, Nicole Fowler-Jaeger, Daniel Sauter, Tom Carroll, Andrew McMahon, Edith Hummler, Bernard C. Rossier

×

A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis
Yufeng Huang, … , Ling Yu, Nancy A. Noble
Yufeng Huang, … , Ling Yu, Nancy A. Noble
Published August 1, 2003
Citation Information: J Clin Invest. 2003;112(3):379-388. https://doi.org/10.1172/JCI18038.
View: Text | PDF

A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis

  • Text
  • PDF
Abstract

In fibrotic renal disease, elevated TGF-β and angiotensin II lead to increased plasminogen activator inhibitor type 1 (PAI-1). PAI-1 appears to reduce glomerular mesangial matrix turnover by inhibiting plasminogen activators, thereby decreasing plasmin generation and plasmin-mediated matrix degradation. We hypothesized that therapy with a mutant human PAI-1 (PAI-1R) that binds to matrix vitronectin but does not inhibit plasminogen activators, would enhance plasmin generation, increase matrix turnover, and decrease matrix accumulation in experimental glomerulonephritis. Three experimental groups included normal, untreated disease control, and PAI-1R–treated nephritic rats. Plasmin generation by isolated day 3 glomeruli was dramatically decreased by 69%, a decrease that was reversed 43% (P < 0.02) by in vivo PAI-1R treatment. At day 6, animals treated with PAI-1R showed significant reductions in proteinuria (48%, P < 0.02), glomerular staining for periodic acid–Schiff positive material (33%, P < 0.02), collagen I (28%, P < 0.01), collagen III (34%, P < 0.01), fibronectin (48%, P < 0.01), and laminin (41%, P < 0.01), and in collagen I (P < 0.01) and fibronectin mRNA levels (P < 0.02). Treatment did not alter overexpression of TGF-β1 and PAI-1 mRNAs, although TGF-β1 protein was significantly reduced. These observations strongly support our hypothesis that PAI-1R reduces glomerulosclerosis by competing with endogenous PAI-1, restoring plasmin generation, inhibiting inflammatory cell infiltration, decreasing local TGF-β1 concentration, and reducing matrix accumulation.

Authors

Yufeng Huang, Masashi Haraguchi, Daniel A. Lawrence, Wayne A. Border, Ling Yu, Nancy A. Noble

×

Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells
János Peti-Peterdi, … , Matthew D. Breyer, P. Darwin Bell
János Peti-Peterdi, … , Matthew D. Breyer, P. Darwin Bell
Published July 1, 2003
Citation Information: J Clin Invest. 2003;112(1):76-82. https://doi.org/10.1172/JCI18018.
View: Text | PDF

Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells

  • Text
  • PDF
Abstract

Macula densa (MD) cells express COX-2 and COX-2–derived PGs appear to signal the release of renin from the renal juxtaglomerular apparatus, especially during volume depletion. However, the synthetic machinery and identity of the specific prostanoid released from intact MD cells remains uncertain. In the present studies, a novel biosensor tool was engineered to directly determine whether MD cells release PGE2 in response to low luminal NaCl concentration ([NaCl]L). HEK293 cells were transfected with the Ca2+-coupled E-prostanoid receptor EP1 (HEK/EP1) and loaded with fura-2. HEK/EP1 cells produced a significant elevation in intracellular [Ca2+] ([Ca2+]i) by 29.6 ± 12.8 nM (n = 6) when positioned at the basolateral surface of isolated perfused MD cells and [NaCl]L was reduced from 150 mM to zero. HEK/EP1 [Ca2+]i responses were observed mainly in preparations from rabbits on a low-salt diet and were completely inhibited by either a selective COX-2 inhibitor or an EP1 antagonist, and also by 100 μM luminal furosemide. Also, 20-mM graduated reductions in [NaCl]L between 80 and 0 mM caused step-by-step increases in HEK/EP1 [Ca2+]i. Low-salt diet greatly increased the expression of both COX-2 and microsome-associated PGE synthase (mPGES) in the MD. These studies provide the first direct evidence that intact MD cells synthesize and release PGE2 during reduced luminal salt content and suggest that this response is important in the control of renin release and renal vascular resistance during salt deprivation.

Authors

János Peti-Peterdi, Peter Komlosi, Amanda L. Fuson, Youfei Guan, André Schneider, Zhonghua Qi, Reyadh Redha, Laszlo Rosivall, Matthew D. Breyer, P. Darwin Bell

×
  • ← Previous
  • 1
  • 2
  • …
  • 26
  • 27
  • 28
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
Local TNF mediates free cholesterol–dependent podocyte injury
In this episode, Alessia Fornoni reveals that TNF promotes free cholesterol–dependent podocyte apoptosis via an NFATc1/ ABCA1-dependent mechanism.
Published August 2, 2016
Video AbstractsNephrology

Anti-THSD7A is a bona fide culprit in membranous nephropathy
Nicola M. Tomas, Elion Hoxha, and colleagues provide evidence that anti-THSD7A antibodies promote the development of membranous nephropathy...
Published May 23, 2016
Scientific Show StopperNephrology

Identifying sporadic focal segmental glomerulosclerosis-associated genes
Haiyang Yu, Mykyta Artomov, Sebastian Brähler and colleagues demonstrate the genetic contribution to the development of focal segmental glomerulosclerosis...
Published February 22, 2016
Scientific Show StopperNephrology

DNA replication stress linked to ciliopathies
Gisela Slaats and colleagues reveal that ciliopathy syndrome-associated mutations in CEP290 result in replication errors and DNA damage…
Published August 24, 2015
Scientific Show StopperNephrology

Nephrotic syndrome-associated mutations
Heon Yung Gee, Fujian Zhang, and colleagues reveal that mutations in KANK family genes underlie podocyte dysfunction and are associated with nephrotic syndrome…
Published May 11, 2015
Scientific Show StopperNephrology

Podocyte macropinocytosis
Jun-Jae Chung, Tobias B. Huber, Markus Gödel, and colleagues show that albumin-bound free fatty acids increase fluid-phase uptake in podocytes…
Published April 27, 2015
Scientific Show StopperNephrology

A network of diuretic resistance
Richard Grimm and colleagues use a systems biology approach to uncover mechanisms of renal compensation that lead to diuretic resistance…
Published April 20, 2015
Scientific Show StopperNephrology

KIM-1 protects the kidney after injury
Li Yang, Craig Brooks, and colleagues at Harvard Medical School demonstrate that KIM-1-mediated phagocytosis of apoptotic cells dampens inflammatory responses after kidney injury.. .
Published March 9, 2015
Scientific Show StopperNephrology

Protection against acute kidney injury
Marina Morigi and colleagues demonstrate that sirtuin 3 expression improves survival in a murine model of acute kidney injury...
Published January 20, 2015
Scientific Show StopperNephrology

Helping polycysin-1 reach the surface
Vladimir Gainullin and colleagues reveal that polycystin-2 is required for maturation and surface localization of polycystin-1…
Published January 9, 2015
Scientific Show StopperNephrology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts