Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Nephrology

  • 276 Articles
  • 11 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 27
  • 28
  • Next →
Acute kidney injury triggers hypoxemia by lung intravascular neutrophil retention that reduces capillary blood flow
Yohei Komaru, … , Daniel Kreisel, Andreas Herrlich
Yohei Komaru, … , Daniel Kreisel, Andreas Herrlich
Published March 6, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI186705.
View: Text | PDF

Acute kidney injury triggers hypoxemia by lung intravascular neutrophil retention that reduces capillary blood flow

  • Text
  • PDF
Abstract

Sterile acute kidney injury (AKI) is common in the clinic and frequently associated with unexplained hypoxemia that does not improve with dialysis. AKI induces remote lung inflammation with neutrophil recruitment in mice and humans, but which cellular cues establish neutrophilic inflammation and how it contributes to hypoxemia is not known. Here we report that AKI induces rapid intravascular neutrophil retention in lung alveolar capillaries without extravasation into tissue or alveoli, causing hypoxemia by reducing lung capillary blood flow in the absence of substantial lung interstitial or alveolar edema. In contrast to direct ischemic lung injury, lung neutrophil recruitment during remote lung inflammation did not require cues from intravascular non-classical monocytes or tissue-resident alveolar macrophages. Instead, lung neutrophil retention depended on neutrophil chemoattractant CXCL2 released by activated classical monocytes. Comparative single-cell RNA-sequencing analysis of direct and remote lung inflammation revealed that alveolar macrophages are highly activated and produce CXCL2 only in direct lung inflammation. Establishing a CXCL2 gradient into the alveolus by intratracheal CXCL2 administration during AKI-induced remote lung inflammation enabled neutrophils to extravasate. We thus discovered important differences in lung neutrophil recruitment in direct versus remote lung inflammation and identified lung capillary neutrophil retention that negatively affects oxygenation by causing a ventilation-perfusion mismatch as a driver of AKI-induced hypoxemia.

Authors

Yohei Komaru, Liang Ning, Carine Lama, Anusha Suresh, Eirini Kefaloyianni, Mark J. Miller, Shinichi Kawana, Hailey M. Shepherd, Wenjun Li, Daniel Kreisel, Andreas Herrlich

×

Sequential carbonyl derivatives and hydrazone adduct formation on myeloperoxidase contribute to development of ANCA-vasculitis
Gang Xi, … , J. Charles Jennette, Ronald J. Falk
Gang Xi, … , J. Charles Jennette, Ronald J. Falk
Published February 28, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI178813.
View: Text | PDF

Sequential carbonyl derivatives and hydrazone adduct formation on myeloperoxidase contribute to development of ANCA-vasculitis

  • Text
  • PDF
Abstract

Drug-induced autoimmune diseases are increasingly recognized although mechanistic insight into disease causation is lacking. Hydralazine exposure has been linked to autoimmune diseases, including anti-neutrophil cytoplasmic autoantibody (ANCA) vasculitis. Our hypothesis posits that hydralazine covalently binds to myeloperoxidase (MPO), triggering the autoimmune response in ANCA vasculitis. We in vitro observed formation of carbonyl derivatives on amine groups in the presence of acrolein. This facilitated the subsequent binding of hydralazine to heme-containing proteins, including MPO, via a Michael addition. Our studies demonstrated that carbonyl derivatives and hydrazone adducts induce conformational changes in the MPO heavy chain, potentially changing its immunogenicity. We identified hydrazone adducts on circulating MPO in patients with hydralazine-associated ANCA vasculitis. These patients exhibited elevated anti-MPO IgM levels, while anti-MPO IgG levels were comparable between hydralazine-associated and non-hydralazine-associated vasculitis patients. IgM isolated from hydralazine-associated MPO ANCA patients demonstrated a heightened affinity to hydralazine-modified MPO and activated neutrophil-like HL-60 cells. Hydralazine-modified MPO was pathogenic, as demonstrated by splenocyte transfer in a mouse model of ANCA vasculitis. Our findings unveil a mechanism of drug-induced autoimmunity wherein stepwise chemical modifications of MPO lead to conformational changes and hydrazone adduct formation producing a neoantigen to which pathogenic autoantibodies are generated.

Authors

Gang Xi, Elizabeth A. Mclnnis, Olivier Lardinois, Peiqi Hu, John S. Poulton, Meghan E. Free, Dhruti P. Chen, Evan M. Zeitler, Eveline Y. Wu, Nicole M. Orzechowski, Vimal K. Derebail, J. Charles Jennette, Ronald J. Falk

×

ZDHHC18 promotes renal fibrosis development by regulating HRAS palmitoylation
Di Lu, … , Yuhang Jiang, Qi Wang
Di Lu, … , Yuhang Jiang, Qi Wang
Published February 6, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI180242.
View: Text | PDF

ZDHHC18 promotes renal fibrosis development by regulating HRAS palmitoylation

  • Text
  • PDF
Abstract

Fibrosis is the final common pathway leading to end stage chronic kidney disease (CKD). However, the function of protein palmitoylation in renal fibrosis and underlying mechanisms remain unclear. In this study, we observed that the expression of the palmitoyltransferase ZDHHC18 was significantly elevated in unilateral ureteral obstruction (UUO) and folic acid (FA)-induced renal fibrosis mouse models, and was significantly upregulated in the fibrotic kidneys of chronic kidney disease patients. Functionally, tubule-specific deletion of ZDHHC18 attenuated tubular epithelial cells partial epithelial-to-mesenchymal transition (EMT), then reduced production of profibrotic cytokine and alleviates tubulointerstitial fibrosis. In contrast, ZDHHC18 overexpression exacerbated progressive renal fibrosis. Mechanistically, ZDHHC18 catalyzed the palmitoylation of HRAS, which is pivotal for its translocation to the plasma membrane and subsequent activation. HRAS palmitoylation promoted downstream phosphorylation of MEK/ERK and further activated RREB1, enhancing SMAD binding to the Snai1 cis-regulatory regions. Taken together, our findings suggest that ZDHHC18 plays a crucial role in renal fibrogenesis and presents a potential therapeutic target for combating kidney fibrosis.

Authors

Di Lu, Gulibositan Aji, Guanyu Li, yue li, Wenlin Fang, Shuai Zhang, ruiqi yu, Sheng Jiang, xia gao, Yuhang Jiang, Qi Wang

×

Targeting allograft inflammatory factor-1 reprograms kidney macrophages to enhance repair
Irma Husain, … , Edward B. Thorp, Xunrong Luo
Irma Husain, … , Edward B. Thorp, Xunrong Luo
Published January 21, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI185146.
View: Text | PDF

Targeting allograft inflammatory factor-1 reprograms kidney macrophages to enhance repair

  • Text
  • PDF
Abstract

The role of macrophages remains incompletely understood in kidney injury and repair. Their plasticity offers an opportunity to polarize them towards mediating injury resolution in both native and transplanted kidneys undergoing ischemia and/or rejection. Here, we show that infiltrating kidney macrophages augmented their AIF-1 expression after injury. Aif1 genetic deletion led to macrophage polarization towards a reparative phenotype while halting the development of kidney fibrosis. The enhanced repair was mediated by higher levels of anti-inflammatory and pro-regenerative markers leading to a reduction in cell death and increase in proliferation of kidney tubular epithelial cells following ischemic reperfusion injury. Adoptive transfer of Aif1-/- macrophages to Aif1+/+ mice conferred protection against ischemia reperfusion injury. Conversely, depletion of macrophages reversed the tissue-reparative effects in Aif1-/- mice. We further demonstrated an increased expression of AIF-1 in human kidney biopsies from native kidneys with acute kidney injury or chronic kidney disease, as well as in biopsies from kidney allografts undergoing acute or chronic rejection. We conclude that AIF-1 is a macrophage marker of renal inflammation, and its targeting uncouples macrophage reparative functions from profibrotic functions. Thus, therapies inhibiting AIF-1 when ischemic injury is inevitable have the potential to reduce the global burden of kidney disease.

Authors

Irma Husain, Holly Shah, Collin Z. Jordan, Naveen R. Natesh, Olivia K. Fay, Yanting Chen, Jamie R. Privratsky, Hiroki Kitai, Tomokazu Souma, Shyni Varghese, David N. Howell, Edward B. Thorp, Xunrong Luo

×

Passive transfer of patient-derived anti-nephrin autoantibodies causes a podocytopathy with minimal change lesions
Felicitas E. Hengel, … , Tobias B. Huber, Nicola M. Tomas
Felicitas E. Hengel, … , Tobias B. Huber, Nicola M. Tomas
Published January 16, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI186769.
View: Text | PDF

Passive transfer of patient-derived anti-nephrin autoantibodies causes a podocytopathy with minimal change lesions

  • Text
  • PDF
Abstract

Authors

Felicitas E. Hengel, Silke Dehde, Oliver Kretz, Jonas Engesser, Tom Zimmermann, Tobias B. Huber, Nicola M. Tomas

×

Intestinal Cyp24a1 regulates vitamin D locally independent of systemic regulation by renal Cyp24a1 in mice
Michaela A.A. Fuchs, … , Tomokazu Souma, Myles Wolf
Michaela A.A. Fuchs, … , Tomokazu Souma, Myles Wolf
Published December 17, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI179882.
View: Text | PDF

Intestinal Cyp24a1 regulates vitamin D locally independent of systemic regulation by renal Cyp24a1 in mice

  • Text
  • PDF
Abstract

Vitamin D regulates mineral homeostasis. The most biologically active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), is synthesized by CYP27B1 from 25-dihydroxyvitamin D (25D) and inactivated by CYP24A1. Human monogenic diseases and genome-wide association studies support a critical role for CYP24A1 in regulation of mineral homeostasis, but little is known about its tissue-specific effects. Here, we describe the responses of mice with inducible global deletion, kidney-specific, and intestine-specific deletion of Cyp24a1 to dietary calcium challenge and chronic kidney disease (CKD). Global and kidney-specific Cyp24a1 deletion caused similar syndromes of systemic vitamin D intoxication: elevated circulating 1,25D, 25D and fibroblast growth factor 23 (FGF23), activation of vitamin D target genes in the kidney and intestine, hypercalcemia, and suppressed parathyroid hormone (PTH). In contrast, mice with intestine-specific Cyp24a1 deletion demonstrated activation of vitamin D target genes exclusively in the intestine despite no changes in systemic vitamin D levels. In response to a high calcium diet, PTH was suppressed despite normal serum calcium. In mice with CKD, intestinal Cyp24a1 deletion decreased PTH and FGF23 without precipitating hypercalcemia. These results implicate kidney CYP24A1 in systemic vitamin D regulation while independent local effects of intestinal CYP24A1 could be targeted to treat secondary hyperparathyroidism in CKD.

Authors

Michaela A.A. Fuchs, Alexander Grabner, Melody Shi, Susan L. Murray, Emily J. Burke, Nejla Latic, Venkataramana Thiriveedi, Jatin Roper, Shintaro Ide, Koki Abe, Hiroki Kitai, Tomokazu Souma, Myles Wolf

×

Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors
Silvana Bazua-Valenti, … , Juan Lorenzo B. Pablo, Anna Greka
Silvana Bazua-Valenti, … , Juan Lorenzo B. Pablo, Anna Greka
Published December 16, 2024
Citation Information: J Clin Invest. 2024;134(24):e180347. https://doi.org/10.1172/JCI180347.
View: Text | PDF

Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors

  • Text
  • PDF
Abstract

The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain–containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.

Authors

Silvana Bazua-Valenti, Matthew R. Brown, Jason Zavras, Magdalena Riedl Khursigara, Elizabeth Grinkevich, Eriene-Heidi Sidhom, Keith H. Keller, Matthew Racette, Moran Dvela-Levitt, Catarina Quintanova, Hasan Demirci, Sebastian Sewerin, Alissa C. Goss, John Lin, Hyery Yoo, Alvaro S. Vaca Jacome, Malvina Papanastasiou, Namrata Udeshi, Steven A. Carr, Nina Himmerkus, Markus Bleich, Kerim Mutig, Sebastian Bachmann, Jan Halbritter, Stanislav Kmoch, Martina Živná, Kendrah Kidd, Anthony J. Bleyer, Astrid Weins, Seth L. Alper, Jillian L. Shaw, Maria Kost-Alimova, Juan Lorenzo B. Pablo, Anna Greka

×

The paradox of eGFR trends and kidney failure incidence in patients without monogenic kidney disorders. Reply.
Mark Elliott, … , Krzysztof Kiryluk, Ali Gharavi
Mark Elliott, … , Krzysztof Kiryluk, Ali Gharavi
Published December 16, 2024
Citation Information: J Clin Invest. 2024;134(24):e187783. https://doi.org/10.1172/JCI187783.
View: Text | PDF

The paradox of eGFR trends and kidney failure incidence in patients without monogenic kidney disorders. Reply.

  • Text
  • PDF
Abstract

Authors

Mark Elliott, Krzysztof Kiryluk, Ali Gharavi

×

The paradox of eGFR trends and kidney failure incidence in patients without monogenic kidney disorders
Xiaona Wang, Dongyan Wang
Xiaona Wang, Dongyan Wang
Published December 16, 2024
Citation Information: J Clin Invest. 2024;134(24):e187470. https://doi.org/10.1172/JCI187470.
View: Text | PDF

The paradox of eGFR trends and kidney failure incidence in patients without monogenic kidney disorders

  • Text
  • PDF
Abstract

Authors

Xiaona Wang, Dongyan Wang

×

Post-ischemic inactivation of HIF Prolyl Hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis
Ratnakar Tiwari, … , Navdeep S. Chandel, Pinelopi P. Kapitsinou
Ratnakar Tiwari, … , Navdeep S. Chandel, Pinelopi P. Kapitsinou
Published December 2, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI176207.
View: Text | PDF

Post-ischemic inactivation of HIF Prolyl Hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis

  • Text
  • PDF
Abstract

Ischemic acute kidney injury (AKI) is common in hospitalized patients and increases the risk for chronic kidney disease (CKD). Impaired endothelial cell (EC) functions are thought to contribute in AKI to CKD transition, but the underlying mechanisms remain unclear. Here, we identify a critical role for endothelial oxygen sensing prolyl hydroxylase domain (PHD) enzymes 1-3 in regulating post-ischemic kidney repair. In renal endothelium, we observed compartment-specific differences in the expression of the three PHD isoforms in both mice and humans. Post-ischemic concurrent inactivation of endothelial PHD1, PHD2, and PHD3 but not PHD2 alone promoted maladaptive kidney repair characterized by exacerbated tissue injury, fibrosis, and inflammation. Single-cell RNA-seq analysis of the post-ischemic endothelial PHD1, PHD2 and PHD3 deficient (PHDTiEC) kidney revealed an endothelial hypoxia and glycolysis related gene signature, also observed in human kidneys with severe AKI. This metabolic program was coupled to upregulation of the SLC16A3 gene encoding the lactate exporter monocarboxylate transporter 4 (MCT4). Strikingly, treatment with the MCT4 inhibitor syrosingopine restored adaptive kidney repair in PHDTiEC mice. Mechanistically, MCT4 inhibition suppressed pro-inflammatory EC activation reducing monocyte-endothelial cell interaction. Our findings suggest avenues for halting AKI to CKD transition based on selectively targeting the endothelial hypoxia-driven glycolysis/MCT4 axis.

Authors

Ratnakar Tiwari, Rajni Sharma, Ganeshkumar Rajendran, Gabriella S. Borkowski, Si Young An, Michael Schonfeld, James O'Sullivan, Matthew J. Schipma, Yalu Zhou, Guillaume Courbon, Benjamin R. Thomson, Valentin David, Susan E. Quaggin, Edward B. Thorp, Navdeep S. Chandel, Pinelopi P. Kapitsinou

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 27
  • 28
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
Local TNF mediates free cholesterol–dependent podocyte injury
In this episode, Alessia Fornoni reveals that TNF promotes free cholesterol–dependent podocyte apoptosis via an NFATc1/ ABCA1-dependent mechanism.
Published August 2, 2016
Video AbstractsNephrology

Anti-THSD7A is a bona fide culprit in membranous nephropathy
Nicola M. Tomas, Elion Hoxha, and colleagues provide evidence that anti-THSD7A antibodies promote the development of membranous nephropathy...
Published May 23, 2016
Scientific Show StopperNephrology

Identifying sporadic focal segmental glomerulosclerosis-associated genes
Haiyang Yu, Mykyta Artomov, Sebastian Brähler and colleagues demonstrate the genetic contribution to the development of focal segmental glomerulosclerosis...
Published February 22, 2016
Scientific Show StopperNephrology

DNA replication stress linked to ciliopathies
Gisela Slaats and colleagues reveal that ciliopathy syndrome-associated mutations in CEP290 result in replication errors and DNA damage…
Published August 24, 2015
Scientific Show StopperNephrology

Nephrotic syndrome-associated mutations
Heon Yung Gee, Fujian Zhang, and colleagues reveal that mutations in KANK family genes underlie podocyte dysfunction and are associated with nephrotic syndrome…
Published May 11, 2015
Scientific Show StopperNephrology

Podocyte macropinocytosis
Jun-Jae Chung, Tobias B. Huber, Markus Gödel, and colleagues show that albumin-bound free fatty acids increase fluid-phase uptake in podocytes…
Published April 27, 2015
Scientific Show StopperNephrology

A network of diuretic resistance
Richard Grimm and colleagues use a systems biology approach to uncover mechanisms of renal compensation that lead to diuretic resistance…
Published April 20, 2015
Scientific Show StopperNephrology

KIM-1 protects the kidney after injury
Li Yang, Craig Brooks, and colleagues at Harvard Medical School demonstrate that KIM-1-mediated phagocytosis of apoptotic cells dampens inflammatory responses after kidney injury.. .
Published March 9, 2015
Scientific Show StopperNephrology

Protection against acute kidney injury
Marina Morigi and colleagues demonstrate that sirtuin 3 expression improves survival in a murine model of acute kidney injury...
Published January 20, 2015
Scientific Show StopperNephrology

Helping polycysin-1 reach the surface
Vladimir Gainullin and colleagues reveal that polycystin-2 is required for maturation and surface localization of polycystin-1…
Published January 9, 2015
Scientific Show StopperNephrology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts