Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Endocrinology

  • 290 Articles
  • 5 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 28
  • 29
  • Next →
Unveiling mechanisms underlying kidney function changes during sex hormone therapy
Sarah A. van Eeghen, … , Daniël Raalte, Natalie J. Nokoff
Sarah A. van Eeghen, … , Daniël Raalte, Natalie J. Nokoff
Published April 7, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI190850.
View: Text | PDF

Unveiling mechanisms underlying kidney function changes during sex hormone therapy

  • Text
  • PDF
Abstract

Background: Men with chronic kidney disease (CKD) experience faster kidney function decline than women. Studies in individuals undergoing sex hormone therapy suggest a role for sex hormones, as estimated glomerular filtration rate (eGFR) increases with feminizing therapy and decreases with masculinizing therapy. However, effects on measured GFR (mGFR), glomerular and tubular function, and involved molecular mechanisms remain unexplored. Methods: This prospective, observational study included individuals initiating feminizing (estradiol and antiandrogens; n=23) or masculinizing (testosterone; n=21) therapy. Baseline and three-month assessments included mGFR (Iohexol clearance), kidney perfusion (para-aminohippuric acid clearance), tubular injury biomarkers, and plasma proteomics. Results: During feminizing therapy, mGFR and kidney perfusion increased (+3.6% and +9.1%, respectively; p<0.05), without increased glomerular pressure. Tubular injury biomarkers, including urine neutrophil gelatinase-associated lipocalin, EGF, monocyte chemoattractant protein-1, and chitinase 3-like protein 1 (YKL-40), decreased significantly (-53%, -42%, -45%, and -58%, respectively). During masculinizing therapy, mGFR and kidney perfusion remained unchanged, but urine YKL-40 and plasma TNFR-1 increased (+134% and +8%, respectively; p<0.05). Proteomic analysis revealed differential expression of 49 proteins during feminizing, and 356 proteins during masculinizing therapy. Many kidney-protective proteins were positively associated with estradiol and negatively associated with testosterone, including proteins involved in endothelial function (SFRP4, SOD3), inflammation reduction (TSG-6), and maintaining kidney tissue structure (agrin). Conclusion: Sex hormones influence kidney physiology, with estradiol showing protective effects on glomerular and tubular function, while testosterone predominantly exerts opposing effects. These findings emphasize the role of sex hormones in sexual dimorphism observed in kidney function and physiology and suggest new approaches for sex-specific precision medicine.

Authors

Sarah A. van Eeghen, Laura Pyle, Phoom Narongkiatikhun, Ye Ji Choi, Wassim Obeid, Chirag R. Parikh, Taryn G. Vosters, Irene GM van Valkengoed, Merle M. Krebber, Daan J. Touw, Martin den Heijer, Petter Bjornstad, Daniël Raalte, Natalie J. Nokoff

×

Meal-feeding promotes skeletal growth by ghrelin-dependent enhancement of growth hormone rhythmicity
Amanda K.E. Hornsby, … , James A. Betts, Timothy Wells
Amanda K.E. Hornsby, … , James A. Betts, Timothy Wells
Published April 1, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI189202.
View: Text | PDF

Meal-feeding promotes skeletal growth by ghrelin-dependent enhancement of growth hormone rhythmicity

  • Text
  • PDF
Abstract

The physiological impact of ultradian temporal feeding patterns remains a major unanswered question in nutritional science. We have employed automated and nasogastric feeding to address this question in male rodents and human volunteers. While grazing and meal-feeding reduced food intake in parallel (compared to ad libitum-fed rodents), body length and tibial epiphysial plate width were maintained in meal-fed rodents via the action of ghrelin and its receptor, GHS-R. Grazing and meal-feeding initially suppressed elevated pre-prandial ghrelin levels in rats, followed by either a sustained elevation in ghrelin in grazing rats or pre-prandial ghrelin surges in meal-fed rats. Episodic growth hormone (GH) secretion was largely unaffected in grazing rats, but meal-feeding tripled GH secretion, with burst height augmented and two additional bursts of GH per day. Continuous nasogastric infusion of enteral feed in humans failed to suppress circulating ghrelin, producing continuously elevated circulating GH with minimal rhythmicity. In contrast, bolus enteral infusion elicited post-prandial ghrelin troughs accompanied by reduced circulating GH, with enhanced ultradian rhythmicity. Taken together, our data imply that the contemporary shift from regular meals to snacking behaviour may be detrimental to optimal skeletal growth outcomes by sustaining circulating GH at levels associated with undernourishment and diminishing GH pulsatility.

Authors

Amanda K.E. Hornsby, Richard C. Brown, Thomas W. Tilston, Harry A. Smith, Alfonso Moreno-Cabañas, Bradley Arms-Williams, Anna L. Hopkins, Katie D. Taylor, Simran K.R. Rogaly, Lois H.M. Wells, Jamie J. Walker, Jeffrey S. Davies, Yuxiang Sun, Jeffrey M. Zigman, James A. Betts, Timothy Wells

×

Absence of intracellular lipolytic inhibitor G0S2 enhances intravascular triglyceride clearance and abolishes diet-induced hypertriglyceridemia
Yongbin Chen, … , Cailin E. McMahon, Jun Liu
Yongbin Chen, … , Cailin E. McMahon, Jun Liu
Published March 18, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI181754.
View: Text | PDF

Absence of intracellular lipolytic inhibitor G0S2 enhances intravascular triglyceride clearance and abolishes diet-induced hypertriglyceridemia

  • Text
  • PDF
Abstract

The interplay between intracellular and intravascular lipolysis is crucial for maintaining circulating lipid levels and systemic energy homeostasis. Adipose triglyceride lipase (ATGL) and lipoprotein lipase (LPL), the primary triglyceride (TG) lipases responsible for these two spatially separate processes, are highly expressed in adipose tissue. Yet, their coordinated regulation remains undetermined. Here, we demonstrate that genetic ablation of G0S2, a specific inhibitory protein of ATGL, completely abolishes diet-induced hypertriglyceridemia and significantly attenuates atherogenesis in mice. These effects are attributed to enhanced whole-body TG clearance, not altered hepatic TG secretion. Specifically, G0S2 deletion increases circulating LPL concentration and activity, predominantly through LPL production from white adipose tissue (WAT). Strikingly, transplantation of G0S2-deficient WAT normalizes plasma TG levels in mice with hypertriglyceridemia. In conjunction with improved insulin sensitivity and decreased ANGPTL4 expression, the absence of G0S2 enhances the stability of LPL protein in adipocytes, a phenomenon that can be reversed upon ATGL inhibition. Collectively, these findings highlight the pivotal role of adipocyte G0S2 in regulating both intracellular and intravascular lipolysis, and the possibility of targeting G0S2 as a viable pharmacological approach to reduce circulating TGs.

Authors

Yongbin Chen, Scott M. Johnson, Stephanie D. Burr, Davide Povero, Aaron M. Anderson, Cailin E. McMahon, Jun Liu

×

ATGL links insulin dysregulation to insulin resistance in adolescents with obesity and hepatosteatosis
Aaron L. Slusher, … , Gerald I. Shulman, Sonia Caprio
Aaron L. Slusher, … , Gerald I. Shulman, Sonia Caprio
Published March 17, 2025
Citation Information: J Clin Invest. 2025;135(6):e184740. https://doi.org/10.1172/JCI184740.
View: Text | PDF

ATGL links insulin dysregulation to insulin resistance in adolescents with obesity and hepatosteatosis

  • Text
  • PDF
Abstract

BACKGROUND This study examined the underlying cellular mechanisms associated with insulin resistance (IR) and metabolic disease risk within subcutaneous adipose tissue (SAT) in youth with obesity and IR compared with those without IR.METHODS Thirteen adolescents who were insulin sensitive (IS) and 17 adolescents with IR and obesity underwent a 3-hour oral glucose tolerance test and MRI to measure abdominal fat distribution and liver fat content. Lipolysis was determined by glycerol turnover ([2H5]-glycerol infusion) and adipose triglyceride lipase (ATGL) phosphorylation (Western blot) from SAT samples biopsied prior to and 30-minutes following insulin infusion during a hyperinsulinemic-euglycemic clamp (HEC).RESULTS Glycerol turnover suppression during the HEC (first step) was lower in participants with IR compared with those with IS. Prior to insulin infusion, activated ATGL (reflected by the p-ATGL (Ser406)-to-ATGL ratio) was greater in participants with IR compared with those with IS and suppressed in response to a 30-minute insulin exposure in participants with IS, but not in those with IR. Lastly, greater ATGL inactivation is associated with greater glycerol suppression and lower liver fat.CONCLUSIONS Insulin-mediated inhibition of adipose tissue lipolysis via ATGL is dysregulated among adolescents with IR compared with those with IS, thereby serving as a vital mechanism linking glucose and insulin dysregulation and ectopic lipid storage within the liver.FUNDING This work was supported by funding from the NIH (R01-HD028016-25A1, T32- DK-007058, R01-DK124272, RO1-DK119968, R01MD015974, RO1-DK113984, P3-DK045735, RO1-DK133143, and RC2-DK120534) and the Robert E. Leet and Clara Guthrie Patterson Trust Mentored Research Award.

Authors

Aaron L. Slusher, Nicola Santoro, Alla Vash-Margita, Alfonso Galderisi, Pamela Hu, Fuyuze Tokoglu, Zhongyao Li, Elena Tarabra, Jordan Strober, Daniel F. Vatner, Gerald I. Shulman, Sonia Caprio

×

Identification of lysosomal lipolysis as an essential noncanonical mediator of adipocyte fasting and cold-induced lipolysis
Yu-Sheng Yeh, … , Irfan J. Lodhi, Babak Razani
Yu-Sheng Yeh, … , Irfan J. Lodhi, Babak Razani
Published March 17, 2025
Citation Information: J Clin Invest. 2025;135(6):e185340. https://doi.org/10.1172/JCI185340.
View: Text | PDF

Identification of lysosomal lipolysis as an essential noncanonical mediator of adipocyte fasting and cold-induced lipolysis

  • Text
  • PDF
Abstract

Adipose tissue lipolysis is the process by which triglycerides in lipid stores are hydrolyzed into free fatty acids (FFAs), serving as fuel during fasting or cold-induced thermogenesis. Although cytosolic lipases are considered the predominant mechanism of liberating FFAs, lipolysis also occurs in lysosomes via lysosomal acid lipase (LIPA), albeit with unclear roles in lipid storage and whole-body metabolism. We found that adipocyte LIPA expression increased in adipose tissue of mice when lipolysis was stimulated during fasting, cold exposure, or β-adrenergic agonism. This was functionally important, as inhibition of LIPA genetically or pharmacologically resulted in lower plasma FFAs under lipolytic conditions. Furthermore, adipocyte LIPA deficiency impaired thermogenesis and oxygen consumption and rendered mice susceptible to diet-induced obesity. Importantly, lysosomal lipolysis was independent of adipose triglyceride lipase, the rate-limiting enzyme of cytosolic lipolysis. Our data suggest a significant role for LIPA and lysosomal lipolysis in adipocyte lipid metabolism beyond classical cytosolic lipolysis.

Authors

Yu-Sheng Yeh, Trent D. Evans, Mari Iwase, Se-Jin Jeong, Xiangyu Zhang, Ziyang Liu, Arick Park, Ali Ghasemian, Borna Dianati, Ali Javaheri, Dagmar Kratky, Satoko Kawarasaki, Tsuyoshi Goto, Hanrui Zhang, Partha Dutta, Francisco J. Schopfer, Adam C. Straub, Jaehyung Cho, Irfan J. Lodhi, Babak Razani

×

Glucagon-like peptide-1 receptor agonists but not dipeptidyl peptidase-4 inhibitors reduce alcohol intake
Mehdi Farokhnia, … , Christopher T. Rentsch, Lorenzo Leggio
Mehdi Farokhnia, … , Christopher T. Rentsch, Lorenzo Leggio
Published March 6, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI188314.
View: Text | PDF

Glucagon-like peptide-1 receptor agonists but not dipeptidyl peptidase-4 inhibitors reduce alcohol intake

  • Text
  • PDF
Abstract

Background: Despite growing preclinical evidence that glucagon-like peptide-1 receptor agonists (GLP-1RAs) could be repurposed to treat alcohol use disorder (AUD), clinical evidence is scarce. Additionally, the potential impact of dipeptidyl peptidase-4 inhibitors (DPP-4Is) on alcohol intake is largely unknown. Methods: We conducted a large cohort study using 2008-2023 electronic health records data from the U.S. Department of Veterans Affairs. Changes in Alcohol Use Disorders Identification Test-Consumption (AUDIT-C) scores were compared between propensity-score-matched GLP-1RA recipients, DPP-4I recipients, and unexposed comparators. We further tested the effects of two DPP-4Is, linagliptin and omarigliptin, on binge-like alcohol drinking in mice and operant oral alcohol self-administration in alcohol-dependent rats, models previously used to show a significant effect of the GLP-1RA semaglutide in reducing alcohol intake. Results: GLP-1RA recipients reported a greater reduction in AUDIT-C scores than unexposed individuals [difference-in-difference: 0.09(0.03,0.14), p=0.0025] and DPP-4I recipients [difference-in-difference: 0.11(0.05,0.17), p=0.0002]. Reductions in drinking were more pronounced among individuals with baseline AUD [GLP-1RA vs. unexposed: 0.51(0.29,0.72), p<0.0001; GLP-1RA vs. DPP-4I: 0.65(0.43,0.88), p<0.0001] and baseline hazardous drinking [GLP-1RA vs. unexposed: 1.38(1.07,1.69), p<0.0001; GLP-1RA vs. DPP-4I: 1.00(0.68,1.33), p<0.0001]. There were no differences between DPP-4I recipients and unexposed individuals. The latter results were confirmed via a reverse translational approach. Specifically, neither linagliptin nor omarigliptin reduced alcohol drinking in mice or rats. The rodent experiments also confirmed target engagement as both DPP-4Is reduced blood glucose levels. Conclusion: Convergent findings across humans, mice, and rats indicate that GLP-1RAs but not DPP-4Is reduce alcohol consumption and may be efficacious in treating AUD.

Authors

Mehdi Farokhnia, John Tazare, Claire L. Pince, Nicolaus Bruns Vi, Joshua C. Gray, Vincent Lo Re III, David A. Fiellin, Henry R. Kranzler, George F. Koob, Amy C. Justice, Leandro F. Vendruscolo, Christopher T. Rentsch, Lorenzo Leggio

×

Safety and efficacy of pharmacological inhibition of ketohexokinase in hereditary fructose intolerance
Evi J.C. Koene, … , Patrick Schrauwen, Martijn C.G.J. Brouwers
Evi J.C. Koene, … , Patrick Schrauwen, Martijn C.G.J. Brouwers
Published February 11, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI187376.
View: Text | PDF

Safety and efficacy of pharmacological inhibition of ketohexokinase in hereditary fructose intolerance

  • Text
  • PDF
Abstract

Authors

Evi J.C. Koene, Amée M. Buziau, David Cassiman, Timothy M. Cox, Judith Bons, Jean L. J. M. Scheijen, Casper G. Schalkwijk, Steven J.R. Meex, Aditi R. Saxena, William P. Esler, Vera B. Schrauwen-Hinderling, Patrick Schrauwen, Martijn C.G.J. Brouwers

×

Leptin signaling maintains autonomic stability during severe influenza infection in mice
Andrés R. Muñoz-Rojas, … , Diane Mathis, Kartik N. Rajagopalan
Andrés R. Muñoz-Rojas, … , Diane Mathis, Kartik N. Rajagopalan
Published October 31, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI182550.
View: Text | PDF

Leptin signaling maintains autonomic stability during severe influenza infection in mice

  • Text
  • PDF
Abstract

Authors

Andrés R. Muñoz-Rojas, Adam C. Wang, Lisa E. Pomeranz, Elizabeth L. Reizis, Heather W. Stout-Delgado, Ileana C. Miranda, Krishnan Rajagopalan, Tadiwanashe Gwatiringa, Roger R. Fan, Ahmad A. Huda, Neha Maskey, Roseline P. Olumuyide, Aryan S. Patel, Jeffrey M. Friedman, Diane Mathis, Kartik N. Rajagopalan

×

Attenuated kidney oxidative metabolism in young adults with type 1 diabetes
Ye Ji Choi, … , Matthias Kretzler, Petter Bjornstad
Ye Ji Choi, … , Matthias Kretzler, Petter Bjornstad
Published October 22, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI183984.
View: Text | PDF

Attenuated kidney oxidative metabolism in young adults with type 1 diabetes

  • Text
  • PDF
Abstract

BACKGROUND. In type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism. METHODS. Young adults with T1D (n = 30) and healthy controls (HC, n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA sequencing, and spatial metabolomics to assess this relationship. RESULTS. Participants with T1D had significantly higher glomerular basement membrane thickness compared to HC. T1D participants exhibited lower insulin sensitivity and cortical oxidative metabolism, correlating with higher insulin sensitivity. Proximal tubular transcripts of TCA cycle and oxidative phosphorylation enzymes were lower in T1D. Spatial metabolomics showed reductions in tubular TCA cycle intermediates, indicating mitochondrial dysfunction. The Slingshot algorithm identified a lineage of proximal tubular cells progressing from stable to adaptive/maladaptive subtypes, using pseudotime trajectory analysis, which computationally orders cells along a continuum of states. This analysis revealed distinct distribution patterns between T1D and HC, with attenuated oxidative metabolism in T1D attributed to a greater proportion of adaptive/maladaptive subtypes with low expression of TCA cycle and oxidative phosphorylation transcripts. Pseudotime progression associated with higher HbA1c, BMI, GBM, and lower insulin sensitivity and cortical oxidative metabolism. CONCLUSION. These early structural and metabolic changes in T1D kidneys may precede clinical DKD. TRIAL REGISTRATION. ClinicalTrials.gov NCT04074668

Authors

Ye Ji Choi, Gabriel Richard, Guanshi Zhang, Jeffrey B. Hodgin, Dawit S. Demeke, Yingbao Yang, Jennifer A. Schaub, Ian M. Tamayo, Bhupendra K. Gurung, Abhijit S. Naik, Viji Nair, Carissa Birznieks, Alexis MacDonald, Phoom Narongkiatikhun, Susan Gross, Lynette Driscoll, Maureen Flynn, Kalie Tommerdahl, Kristen J. Nadeau, Viral N. Shah, Tim Vigers, Janet K. Snell-Bergeon, Jessica Kendrick, Daniel H. van Raalte, Lu-Ping Li, Pottumarthi Prasad, Patricia Ladd, Bennett B. Chin, David Z. Cherney, Phillip J. McCown, Fadhl Alakwaa, Edgar A. Otto, Frank C. Brosius, Pierre Jean Saulnier, Victor G. Puelles, Jesse A. Goodrich, Kelly Street, Manjeri A. Venkatachalam, Aaron Ruiz, Ian H. de Boer, Robert G. Nelson, Laura Pyle, Denis P. Blondin, Kumar Sharma, Matthias Kretzler, Petter Bjornstad

×

Activation of Gs signaling in mouse enteroendocrine K-cells greatly improves obesity- and diabetes-related metabolic deficits
Antwi-Boasiako Oteng, … , Frank Reimann, Jürgen Wess
Antwi-Boasiako Oteng, … , Frank Reimann, Jürgen Wess
Published October 22, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI182325.
View: Text | PDF

Activation of Gs signaling in mouse enteroendocrine K-cells greatly improves obesity- and diabetes-related metabolic deficits

  • Text
  • PDF
Abstract

Following a meal, glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), the two major incretins promoting insulin release, are secreted from specialized enteroendocrine cells (L- and K-cells, respectively). Although GIP is the dominant incretin in humans, the detailed molecular mechanisms governing its release remain to be explored. GIP secretion is regulated by the activity of G protein-coupled receptors (GPCRs) expressed by K-cells. GPCRs couple to one or more specific classes of heterotrimeric G proteins. In the present study, we focused on the potential metabolic roles of K-cell Gs. First, we generated a mouse model that allowed us to selectively stimulate K-cell Gs signaling. Second, we generated a mouse strain harboring an inactivating mutation of Gnas, the gene encoding the alpha-subunit of Gs, selectively in K-cells. Metabolic phenotyping studies showed that acute or chronic stimulation of K-cell Gs signaling greatly improved impaired glucose homeostasis in obese mice and in a mouse model of type 2 diabetes, due to enhanced GIP secretion. In contrast, K-cell-specific Gnas knockout mice displayed markedly reduced plasma GIP levels. These data strongly suggest that strategies aimed at enhancing K-cell Gs signaling may prove useful for the treatment of diabetes and related metabolic diseases.

Authors

Antwi-Boasiako Oteng, Liu Liu, Yinghong Cui, Oksana Gavrilova, Huiyan Lu, Min Chen, Lee S. Weinstein, Jonathan E. Campbell, Jo E. Lewis, Fiona M. Gribble, Frank Reimann, Jürgen Wess

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 28
  • 29
  • Next →
Dynamin 2 prevents insulin granule traffic jams
Fan Fan and colleagues demonstrate that dynamin 2 is important for maintaining insulin secretion dynamics in β cells…
Published September 28, 2015
Scientific Show StopperEndocrinology

UPR stress gets β cells going
Rohit Sharma and colleagues reveal that insulin demand-induced β cell proliferation is regulated by the unfolded protein response…
Published September 21, 2015
Scientific Show StopperEndocrinology

Restricting β cell growth
Sung Hee Um and colleagues reveal that S6K1-dependent alterations of β cell size and function are independent of intrauterine growth restriction…
Published June 15, 2015
Scientific Show StopperEndocrinology

Insight into Kallmann syndrome
Anna Cariboni and colleagues demonstrate that dysfunctional SEMA3E results in gonadotropin-releasing hormone neuron deficiency…
Published May 18, 2015
Scientific Show StopperEndocrinology

L cells to the rescue
Natalia Peterson and colleagues demonstrate that increasing L cell populations in the gut improves insulin responses and glucose tolerance in a murine type 2 diabetes model…
Published December 15, 2014
Scientific Show StopperEndocrinology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts