Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

  • 479 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 47
  • 48
  • Next →
Flavin-containing monooxygenase 2 confers cardioprotection in ischemia models through its disulfide-bond catalytic activity
Qingnian Liu, … , Xinyang Hu, Jian'an Wang
Qingnian Liu, … , Xinyang Hu, Jian'an Wang
Published October 31, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI177077.
View: Text | PDF

Flavin-containing monooxygenase 2 confers cardioprotection in ischemia models through its disulfide-bond catalytic activity

  • Text
  • PDF
Abstract

Myocardial infarction (MI) is characterized by massive cardiomyocytes death and cardiac dysfunction, and effective therapies to achieve cardioprotection are sorely needed. Here we reported that flavin containing monooxygenase 2 (FMO2) level was markedly increased in cardiomyocytes both in ex vivo and in vivo models of ischemia injury. Genetic deletion of FMO2 resulted in reduced cardiomyocyte survival and enhanced cardiac dysfunction, whereas cardiomyocyte-specific FMO2 overexpression exerted a protective effect in infarcted rat hearts. Mechanistically, FMO2 inhibited the activation of endoplasmic reticulum (ER) stress-induced apoptotic proteins, including caspase 12 and C/EBP homologous protein (CHOP), by down-regulating unfolded protein response (UPR) pathway. Furthermore, we identified FMO2 as a chaperone that catalyzed disulfide-bond formation in unfolded/misfolded proteins through its GVSG motif. GVSG-mutated FMO2 failed to catalyze disulfide-bond formation and lost its protection against ER stress and cardiomyocyte death. Finally, we demonstrated the protective effect of FMO2 in human induced pluripotent stem cell–derived cardiomyocyte (hiPSC-CM) model. Collectively, this study highlights FMO2 as a key modulator of oxidative protein folding in cardiomyocytes and underscores its therapeutic potential for treating ischemic heart disease.

Authors

Qingnian Liu, Jiniu Huang, Hao Ding, Yue Tao, Jinliang Nan, Changchen Xiao, Yingchao Wang, Rongrong Wu, Cheng Ni, Zhiwei Zhong, Wei Zhu, Jinghai Chen, Chenyun Zhang, Xiao He, Danyang Xiong, Xinyang Hu, Jian'an Wang

×

Distinct mechanisms drive divergent phenotypes in hypertrophic and dilated cardiomyopathy associated TPM1 variants
Saiti S. Halder, … , William Lehman, Stuart G. Campbell
Saiti S. Halder, … , William Lehman, Stuart G. Campbell
Published October 22, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI179135.
View: Text | PDF

Distinct mechanisms drive divergent phenotypes in hypertrophic and dilated cardiomyopathy associated TPM1 variants

  • Text
  • PDF
Abstract

Hypertrophic and dilated cardiomyopathies (HCM and DCM, respectively) are inherited disorders that may be caused by mutations to the same sarcomeric protein but have completely different clinical phenotypes. The precise mechanisms by which point mutations within the same gene bring about phenotypic diversity remain unclear. Our objective has been to develop a mechanistic explanation of diverging phenotypes in two TPM1 mutations, E62Q (HCM) and E54K (DCM). Drawing on data from the literature and experiments with stem cell-derived cardiomyocytes expressing the TPM1 mutations of interest, we constructed computational simulations that provide plausible explanations of the distinct muscle contractility caused by each variant. In E62Q, increased calcium sensitivity and hypercontractility was explained most accurately by a reduction in effective molecular stiffness of tropomyosin and alterations in its interactions with the actin thin filament that favor the ‘closed’ regulatory state. By contrast, the E54K mutation appeared to act via long-range allosteric interactions to increase the association rate of the C-terminal troponin I mobile domain to tropomyosin/actin. These mutation-linked molecular events produced diverging alterations in gene expression that can be observed in human engineered heart tissues. Modulators of myosin activity confirmed our proposed mechanisms by rescuing normal contractile behavior in accordance with predictions.

Authors

Saiti S. Halder, Michael J. Rynkiewicz, Lynne Kim, Meaghan Barry, Ahmed G.A. Zied, Lorenzo R. Sewanan, Jonathan A. Kirk, Jeffrey R. Moore, William Lehman, Stuart G. Campbell

×

ADAMTS12 promotes fibrosis by restructuring extracellular matrix to enable activation of injury-responsive fibroblasts
Konrad Hoeft, … , Sikander Hayat, Rafael Kramann
Konrad Hoeft, … , Sikander Hayat, Rafael Kramann
Published September 17, 2024
Citation Information: J Clin Invest. 2024;134(18):e170246. https://doi.org/10.1172/JCI170246.
View: Text | PDF

ADAMTS12 promotes fibrosis by restructuring extracellular matrix to enable activation of injury-responsive fibroblasts

  • Text
  • PDF
Abstract

Fibrosis represents the uncontrolled replacement of parenchymal tissue with extracellular matrix (ECM) produced by myofibroblasts. While genetic fate-tracing and single-cell RNA-Seq technologies have helped elucidate fibroblast heterogeneity and ontogeny beyond fibroblast to myofibroblast differentiation, newly identified fibroblast populations remain ill defined, with respect to both the molecular cues driving their differentiation and their subsequent role in fibrosis. Using an unbiased approach, we identified the metalloprotease ADAMTS12 as a fibroblast-specific gene that is strongly upregulated during active fibrogenesis in humans and mice. Functional in vivo KO studies in mice confirmed that Adamts12 was critical during fibrogenesis in both heart and kidney. Mechanistically, using a combination of spatial transcriptomics and expression of catalytically active or inactive ADAMTS12, we demonstrated that the active protease of ADAMTS12 shaped ECM composition and cleaved hemicentin 1 (HMCN1) to enable the activation and migration of a distinct injury-responsive fibroblast subset defined by aberrant high JAK/STAT signaling.

Authors

Konrad Hoeft, Lars Koch, Susanne Ziegler, Ling Zhang, Steffen Luetke, Maria C. Tanzer, Debashish Mohanta, David Schumacher, Felix Schreibing, Qingqing Long, Hyojin Kim, Barbara M. Klinkhammer, Carla Schikarski, Sidrah Maryam, Mathijs Baens, Juliane Hermann, Sarah Krieg, Fabian Peisker, Laura De Laporte, Gideon J.L. Schaefer, Sylvia Menzel, Joachim Jankowski, Benjamin D. Humphreys, Adam Wahida, Rebekka K. Schneider, Matthias Versele, Peter Boor, Matthias Mann, Gerhard Sengle, Sikander Hayat, Rafael Kramann

×

A six-year study in a real-world population reveals an increased incidence of dyslipidemia during COVID-19
Valentina Trimarco, … , Bruno Trimarco, Gaetano Santulli
Valentina Trimarco, … , Bruno Trimarco, Gaetano Santulli
Published September 12, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI183777.
View: Text | PDF

A six-year study in a real-world population reveals an increased incidence of dyslipidemia during COVID-19

  • Text
  • PDF
Abstract

BACKGROUND. Recent studies conducted in COVID-19 survivors suggest that SARS-CoV-2 infection is associated with an increased risk of dyslipidemia. However, it remains unclear whether this augmented risk is confirmed in the general population and how this phenomenon is impacting the overall burden of cardiometabolic diseases. METHODS. To address these aspects, we conducted a 6-year longitudinal study to examine the broader effects of COVID-19 on dyslipidemia incidence within a real-world population (228,266 subjects) residing in Naples, Southern Italy. The pre-COVID-19 and the COVID-19 groups were balanced for demographic and clinical factors using propensity score matching. RESULTS. Our analysis spans over a period of three years during the pandemic (2020–2022), comparing dyslipidemia incidence with pre-pandemic data (2017–2019), with a follow-up time of at least 1,095 days corresponding to 21,349,215 person-years. During the COVID-19 period we detected an increased risk of developing any dyslipidemia when compared with the pre-COVID-19 triennium (OR = 1.29, 95% CI 1.19–1.39). Importantly, these estimates were adjusted for comorbidities by a multivariate analysis. CONCLUSIONS. Taken together, our data reveal a notable rise in dyslipidemia incidence amid the COVID-19 pandemic, suggesting to establish specialized clinical monitoring protocols for COVID-19 survivors to mitigate the risk of dyslipidemia development.

Authors

Valentina Trimarco, Raffaele Izzo, Stanislovas S. Jankauskas, Mario Fordellone, Giuseppe Signoriello, Maria Virginia Manzi, Maria Lembo, Paola Gallo, Giovanni Esposito, Roberto Piccinocchi, Francesco Rozza, Carmine Morisco, Pasquale Mone, Gaetano Piccinocchi, Fahimeh Varzideh, Bruno Trimarco, Gaetano Santulli

×

Single-cell multiomic analysis identifies macrophage subpopulations in promoting cardiac repair
Mingzhu Fu, … , Yulong Zhong, Shanshan Ai
Mingzhu Fu, … , Yulong Zhong, Shanshan Ai
Published August 27, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI175297.
View: Text | PDF

Single-cell multiomic analysis identifies macrophage subpopulations in promoting cardiac repair

  • Text
  • PDF
Abstract

Cardiac macrophages/monocytes participate in maintaining homeostasis and orchestrating cardiac responses upon injury. However, the function of specific macrophage/monocyte subtypes and the related cell fate commitment mechanisms remain elusive in regenerative and nonregenerative hearts due to their cellular heterogeneities. Using spatiotemporal single-cell epigenomic analysis of cardiac macrophages/monocytes in regenerative (P1) and nonregenerative (P10) mouse hearts post injury, we found that P1 hearts accumulate reparative Arg1+ macrophages, while proinflammatory S100a9+Ly6c+ monocytes are uniquely abundant during nonregenerative remodeling. Moreover, blocking chemokine CXCR2 to inhibit the specification of the S100a9+Ly6c+-biased inflammatory fate in P10 hearts resulted in elevated wound repair responses and marked improvements in cardiac function after injury. Single-cell RNA-seq further confirmed an increased Arg1+ macrophage subpopulation after CXCR2 blockade, which was accomplished by increased expression of wound repair-related genes and reduced expression of proinflammatory genes. Collectively, our findings provide instructive insights into the molecular mechanisms underlying the function and fate specification of heterogeneous macrophages/monocytes during cardiac repair and identify potential therapeutic targets for myocardial infarction.

Authors

Mingzhu Fu, Shengtao Jia, Longhui Xu, Xin Li, Yufang Lv, Yulong Zhong, Shanshan Ai

×

Modulation of NOX2 causes obesity-mediated atrial fibrillation
Arvind Sridhar, … , Jalees Rehman, Dawood Darbar
Arvind Sridhar, … , Jalees Rehman, Dawood Darbar
Published August 15, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI175447.
View: Text | PDF

Modulation of NOX2 causes obesity-mediated atrial fibrillation

  • Text
  • PDF
Abstract

Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase II (NOX2), a major source of oxidative stress and reactive oxygen species (ROS) in the heart predisposes to AF, the underlying mechanisms remain unclear. Here, we studied NOX2-mediated ROS production in obesity-mediated AF using Nox2-knock-out (KO) mice and mature human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). Diet-induced obesity (DIO) mice and hiPSC-aCMs treated with palmitic acid (PA) were infused with a NOX blocker (apocynin) and a NOX2-specific inhibitor, respectively. We showed that NOX2 inhibition normalized atrial action potential duration and abrogated obesity-mediated ion channel remodeling with reduced AF burden. Unbiased transcriptomics analysis revealed that NOX2 mediates atrial remodeling in obesity-mediated AF in DIO mice, PA-treated hiPSC-aCMs, and human atrial tissue from obese individuals by upregulation of paired-like homeodomain transcription factor 2 (PITX2). Furthermore, hiPSC-aCMs treated with hydrogen peroxide, a NOX2 surrogate, displayed increased PITX2 expression, establishing a mechanistic link between increased NOX2-mediated ROS production and modulation of PITX2. Our findings offer insights into possible mechanisms through which obesity triggers AF and support NOX2 inhibition as a potential novel prophylactic or adjunctive therapy for patients with obesity-mediated AF.

Authors

Arvind Sridhar, Jaime DeSantiago, Hanna Chen, Mahmud Arif Pavel, Olivia Ly, Asia Owais, Miles Barney, Jordan Jousma, Sarath Babu Nukala, Khaled Abdelhady, Malek Massad, Lona Ernst Rizkallah, Sang-Ging Ong, Jalees Rehman, Dawood Darbar

×

Posttranslationally modified self-peptides promote hypertension in mouse models
Nathaniel Bloodworth, … , Jens Meiler, David G. Harrison
Nathaniel Bloodworth, … , Jens Meiler, David G. Harrison
Published August 15, 2024
Citation Information: J Clin Invest. 2024;134(16):e174374. https://doi.org/10.1172/JCI174374.
View: Text | PDF

Posttranslationally modified self-peptides promote hypertension in mouse models

  • Text
  • PDF
Abstract

Posttranslational modifications can enhance immunogenicity of self-proteins. In several conditions, including hypertension, systemic lupus erythematosus, and heart failure, isolevuglandins (IsoLGs) are formed by lipid peroxidation and covalently bond with protein lysine residues. Here, we show that the murine class I major histocompatibility complex (MHC-I) variant H-2Db uniquely presents isoLG-modified peptides and developed a computational pipeline that identifies structural features for MHC-I accommodation of such peptides. We identified isoLG-adducted peptides from renal proteins, including sodium glucose transporter 2, cadherin 16, Kelch domain–containing protein 7A, and solute carrier family 23, that are recognized by CD8+ T cells in tissues of hypertensive mice, induce T cell proliferation in vitro, and prime hypertension after adoptive transfer. Finally, we find patterns of isoLG-adducted antigen restriction in class I human leukocyte antigens that are similar to those in murine analogs. Thus, we have used a combined computational and experimental approach to define likely antigenic peptides in hypertension.

Authors

Nathaniel Bloodworth, Wei Chen, Kuniko Hunter, David Patrick, Amy Palubinsky, Elizabeth Phillips, Daniel Roeth, Markus Kalkum, Simon Mallal, Sean Davies, Mingfang Ao, Rocco Moretti, Jens Meiler, David G. Harrison

×

Early ascertainment of genetic diagnoses clarifies impact on medium-term survival following neonatal congenital heart surgery
Benjamin J. Landis, … , Gabrielle C. Geddes, Stephanie M. Ware
Benjamin J. Landis, … , Gabrielle C. Geddes, Stephanie M. Ware
Published July 30, 2024
Citation Information: J Clin Invest. 2024. https://doi.org/10.1172/JCI180098.
View: Text | PDF

Early ascertainment of genetic diagnoses clarifies impact on medium-term survival following neonatal congenital heart surgery

  • Text
  • PDF
Abstract

Authors

Benjamin J. Landis, Benjamin M. Helm, Matthew D. Durbin, Lindsey R. Helvaty, Jeremy L. Herrmann, Michael Johansen, Gabrielle C. Geddes, Stephanie M. Ware

×

Frameshift variants in C10orf71 cause dilated cardiomyopathy in human, mouse, and organoid models
Yang Li, … , Wendy K. Chung, Yulin Li
Yang Li, … , Wendy K. Chung, Yulin Li
Published June 17, 2024
Citation Information: J Clin Invest. 2024;134(12):e177172. https://doi.org/10.1172/JCI177172.
View: Text | PDF

Frameshift variants in C10orf71 cause dilated cardiomyopathy in human, mouse, and organoid models

  • Text
  • PDF
Abstract

Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.

Authors

Yang Li, Ke Ma, Zhujun Dong, Shijuan Gao, Jing Zhang, Shan Huang, Jie Yang, Guangming Fang, Yujie Li, Xiaowei Li, Carrie Welch, Emily L. Griffin, Prema Ramaswamy, Zaheer Valivullah, Xiuying Liu, Jianzeng Dong, Dao Wen Wang, Jie Du, Wendy K. Chung, Yulin Li

×

Increased endothelial sclerostin caused by elevated DSCAM mediates multiple trisomy 21 phenotypes
David M. McKean, … , J.G. Seidman, Christine E. Seidman
David M. McKean, … , J.G. Seidman, Christine E. Seidman
Published June 3, 2024
Citation Information: J Clin Invest. 2024;134(11):e167811. https://doi.org/10.1172/JCI167811.
View: Text | PDF

Increased endothelial sclerostin caused by elevated DSCAM mediates multiple trisomy 21 phenotypes

  • Text
  • PDF
Abstract

Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10–8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10–8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10–27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10–5) and ZNF467 (P = 2.9 × 10–4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.

Authors

David M. McKean, Qi Zhang, Priyanka Narayan, Sarah U. Morton, Viktoria Strohmenger, Vi T. Tang, Sophie McAllister, Ananya Sharma, Daniel Quiat, Daniel Reichart, Daniel M. DeLaughter, Hiroko Wakimoto, Joshua M. Gorham, Kemar Brown, Barbara McDonough, Jon A. Willcox, Min Young Jang, Steven R. DePalma, Tarsha Ward, Pediatric Cardiac Genomics Consortium Investigators, Richard Kim, John D. Cleveland, J.G. Seidman, Christine E. Seidman

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 47
  • 48
  • Next →
Calpain-6 mediates atherogenic macrophage function
In this episode, Takuro Miyazaki and colleagues reveal that elevation of calpain-6 in macrophages promotes atherogenic functions by disrupting CWC22/EJC/Rac1 signaling.
Published August 15, 2016
Video AbstractsCardiology

Kruppel-like factor 4 keeps the heart healthy
Xudong Liao and colleagues identify KLF4 as an important regulator of mitochondrial development and function in the heart…
Published August 4, 2015
Scientific Show StopperCardiology

Oxidation impedes cardioprotection
Taishi Nakamura and colleagues reveal that oxidation prevents the beneficial effects of PKG1α in response to cardiac stress…
Published May 4, 2015
Scientific Show StopperCardiology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts