Background: Bacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome that is prevalent among reproductive-age females worldwide. Adverse health outcomes associated with BV include an increased risk of sexually-acquired HIV, yet the immunological mechanisms underlying this association are not well understood. Methods: To investigate BV-driven changes to cervicovaginal tract (CVT) and circulating T cell phenotypes, Kinga Study participants with or without BV provided vaginal tract (VT) and ectocervical (CX) tissue biopsies and PBMC samples. Results: High-parameter flow cytometry revealed an increased frequency of cervical conventional CD4+ T cells (Tconv) expressing CCR5. However, we found no difference in number of CD3+CD4+CCR5+ cells in the CX or VT of BV+ versus BV- individuals, suggesting that BV-driven increased HIV susceptibility may not be solely attributed to increased CVT HIV target cell abundance. Flow cytometry also revealed that individuals with BV have an increased frequency of dysfunctional CX and VT CD39+ Tconv and CX tissue-resident CD69+CD103+ Tconv, reported to be implicated in HIV acquisition risk and replication. Many soluble immune factor differences in the CVT further support that BV elicits diverse and complex CVT immune alterations. Conclusion: Our comprehensive analysis expands on potential immunological mechanisms that may underlie the adverse health outcomes associated with BV including increased HIV susceptibility.
Finn MacLean, Adino Tesfahun Tsegaye, Jessica B. Graham, Jessica L. Swarts, Sarah C. Vick, Nicole B. Potchen, Irene Cruz Talavera, Lakshmi Warrier, Julien Dubrulle, Lena K. Schroeder, Ayumi Saito, Corinne Mar, Katherine K. Thomas, Matthias Mack, Michelle C. Sabo, Bhavna H. Chohan, Kenneth Ngure, Nelly Rwamba Mugo, Jairam R. Lingappa, Jennifer M. Lund
Tumor-associated macrophages (TAMs) are the most prominent immune cell population in the glioblastoma (GBM) tumor microenvironment (TME) and play critical roles in promoting tumor progression and immunosuppression. Here we identified that TAM-derived legumain (LGMN) exhibited a dual role in regulating the biology of TAMs and GBM cells. LGMN promoted macrophage infiltration in a cell-autonomous manner by activating the GSK3b-STAT3 pathway. Moreover, TAM-derived LGMN activated the integrin aV-AKT-P65 signaling to drive GBM cell proliferation and survival. Targeting LGMN-directed macrophage (inhibiting GSK3b and STAT3) and GBM cell (inhibiting integrin aV) mechanisms resulted in an anti-tumor effect in immunocompetent GBM mouse models that was further enhanced when combined with anti-PD1 therapy. Our study reveals a paracrine and autocrine mechanism of TAM-derived LGMN in promoting GBM progression and immunosuppression, providing effective therapeutic targets for improving immunotherapy in GBM.
Lizhi Pang, Songlin Guo, Yuyun Huang, Fatima Khan, Yang Liu, Fei Zhou, Justin D. Lathia, Peiwen Chen
Regulatory T (Treg) cells modulate immune responses and attenuate inflammation. Extracellular vesicles from human cardiosphere-derived cells (CDC-EVs) enhance Treg proliferation and IL10 production, but the mechanisms remain unclear. Here we focus on BCYRN1, a long noncoding RNA (lncRNA) highly abundant in CDC-EVs, and its role in Treg cell function. BCYRN1 acts as a "microRNA sponge," inhibiting miR-138, miR-150, and miR-98. Suppression of these miRs leads to increased Treg cell proliferation via ATG7-dependent autophagy, CCR6-dependent Treg migration, and enhanced Treg IL10 production. In a mouse model of myocardial infarction, CDC-EVs, particularly those overexpressing BCYRN1, were cardioprotective, reducing infarct size and troponin I levels even when administered after reperfusion. Underlying the cardioprotection, we verified that CDC-EVs overexpressing BCYRN1 increased cardiac Treg infiltration, proliferation, and IL10 production in vivo. These salutary effects were negated when BCYRN1 levels were reduced in CDC-EVs, or when Tregs were depleted systemically. Thus, we have identified BCYRN1 as a booster of Treg number and bioactivity, rationalizing its cardioprotective efficacy. While here we studied BCYRN1 overexpression in the context of ischemic injury, the same approach merits testing in other disease processes (e.g., autoimmunity or transplant rejection) where increased Treg activity is a recognized therapeutic goal.
Ke Liao, Jiayi Yu, Akbarshakh Akhmerov, Zahra Mohammadigoldar, Liang Li, Weixin Liu, Natasha Anders, Ahmed G.E. Ibrahim, Eduardo Marbán
Allosteric inhibitors of the tyrosine phosphatase SHP2 hold therapeutic promise in cancers with overactive RAS/ERK signaling but “adaptive resistance” to SHP2 inhibitors may limit benefits. Here, we utilized tumor cells that proliferate similarly with or without endogenous SHP2 to explore means to overcome this growth-independence from SHP2. We found that SHP2 depletion profoundly alters output of vascular regulators, cytokines, chemokines, and other factors from SHP2 growth-resistant cancer cells. Tumors derived from inoculation of SHP2-depleted, but SHP2 growth-independent, mouse melanoma and colon carcinoma cell lines display a typically subverted architecture where proliferative tumor cells cluster in distinct “vascular islands” centered by remodeled vessels, each limited by surrounding hypoxic and dead tumor tissue, where inflammatory blood cells are limited. Although vascular islands generally reflect protected sanctuaries for tumor cells, we found that vascular island-resident, highly proliferative, SHP2-depleted tumor cells acquire an increased sensitivity to blocking MEK/ERK signaling resulting in reduced tumor growth. Our results show that response to targeted therapies in resistant tumor cells is controlled by tumor cell-induced vascular changes and tumor architectural reorganization providing a compelling approach to eliciting tumor response by exploiting tumor and endothelial-dependent biochemical changes.
Yuyi Wang, Hidetaka Ohnuki, Andy D. Tran, Dunrui Wang, Taekyu Ha, Jing-Xin Feng, Minji Sim, Raymond Barnhill, Claire Lugassy, Michael R. Sargen, Emanuel Salazar-Cavazos, Michael Kruhlak, Giovanna Tosato
Red blood cells (RBCs) induce endothelial dysfunction in type 2 diabetes (T2D), but the mechanism by which RBCs communicate with the vessel is unknown. This study tested the hypothesis that extracellular vesicles (EVs) secreted by RBCs act as mediators of endothelial dysfunction in T2D. Despite a lower production of EVs derived from RBCs of T2D patients (T2D RBC-EVs), their uptake by endothelial cells was greater than that of EVs derived from RBCs of healthy individuals (H RBC-EVs). T2D RBC-EVs impaired endothelium-dependent relaxation and this effect was attenuated following inhibition of arginase in EVs. Inhibition of vascular arginase or oxidative stress also attenuated endothelial dysfunction induced by T2D RBC-EVs. Arginase-1 was detected in RBC-derived EVs, and arginase-1 and oxidative stress were increased in endothelial cells following co-incubation with T2D RBC-EVs. T2D RBC-EVs also increased arginase-1 protein in endothelial cells following mRNA silencing and in the endothelium of aortas from endothelial cell arginase 1 knockout mice. It is concluded that T2D-RBCs induce endothelial dysfunction through increased uptake of EVs that transfer arginase-1 from RBCs to the endothelium to induce oxidative stress and endothelial dysfunction. These results shed important light on the mechanism underlying endothelial injury mediated by RBCs in T2D.
Aida Collado, Rawan Humoud, Eftychia Kontidou, Maria Eldh, Jasmin Swaich, Allan Zhao, Jiangning Yang, Tong Jiao, Elena Domingo, Emelie Carlestål, Ali Mahdi, John Tengbom, Ákos Végvári, Qiaolin Deng, Michael Alvarsson, Susanne Gabrielsson, Per Eriksson, Zhichao Zhou, John Pernow
Mutations and deletions in TP53 are associated with adverse outcomes in patients with myeloid malignancies and developing improved therapies for TP53-mutant leukemias is of urgent need. Here we identify mutations in TET2 as the most common co-occurring mutation in TP53 mutant acute myeloid leukemia (AML) patients. In mice, combined hematopoietic-specific deletion of TET2 and TP53 resulted in enhanced self-renewal compared to deletion of either gene alone. Tp53/Tet2 double knockout mice developed serially transplantable AML. Both mice and AML patients with combined TET2/TP53 alterations upregulated innate immune signaling in malignant granulocyte-monocyte progenitors (GMPs), which had leukemia-initiating capacity. A20 governs the leukemic maintenance by triggering aberrant non-canonical NF-κB signaling. Mice with Tp53/Tet2 loss had expansion of monocytic myeloid-derived suppressor cells (MDSCs), which impaired T cell proliferation and activation. Moreover, mice and AML patients with combined TP53/TET2 alterations displayed increased expression of the TIGIT ligand, CD155, on malignant cells. TIGIT blocking antibodies augmented NK cell-mediated killing of Tp53/Tet2 double-mutant AML cells, reduced leukemic burden, and prolonged survival in Tp53/Tet2 double knockout mice. These findings uncover a leukemia-promoting link between TET2 and TP53 mutations and highlight therapeutic strategies to overcome the immunosuppressive bone marrow environment in this adverse subtype of AML.
Pu Zhang, Ethan C. Whipp, Sarah J. Skuli, Mehdi Gharghabi, Caner Saygin, Steven A. Sher, Martin Carroll, Xiangyu Pan, Eric D. Eisenmann, Tzung-Huei Lai, Bonnie K. Harrington, Wing Keung Chan, Youssef Youssef, Bingyi Chen, Alex Penson, Alexander M. Lewis, Cynthia R. Castro, Nina Fox, Ali Cihan, Jean-Benoit Le Luduec, Susan DeWolf, Tierney Kauffman, Alice S. Mims, Daniel Canfield, Hannah Phillips, Katie E. Williams, Jami Shaffer, Arletta Lozanski, Tzyy-Jye Doong, Gerard Lozanski, Charlene Mao, Christopher J. Walker, James S. Blachly, Anthony F. Daniyan, Lapo Alinari, Robert A. Baiocchi, Yiping Yang, Nicole R. Grieselhuber, Moray J. Campbell, Sharyn D. Baker, Bradley W. Blaser, Omar Abdel-Wahab, Rosa Lapalombella
Aberrant RNA splicing is tightly linked to diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we revealed that minor intron splicing, a unique and conserved RNA processing event, is largely disrupted upon the progression of metabolic dysfunction-associated steatohepatitis (MASH) in mice and humans. We demonstrated deficiency of minor intron splicing in the liver induces MASH transition upon obesity-induced insulin resistance and LXR activation. Mechanistically, inactivation of minor intron splicing leads to minor intron retention of Insig1 and Insig2, resulting in premature termination of translation, which drives proteolytic activation of SREBP1c. This mechanism is conserved in human patients with MASH. Notably, disrupted minor intron splicing activates glutamine reductive metabolism for de novo lipogenesis through the induction of Idh1, which causes the accumulation of ammonia in the liver, thereby initiating hepatic fibrosis upon LXR activation. Ammonia clearance or IDH1 inhibition blocks hepatic fibrogenesis and mitigates MASH progression. More importantly, the overexpression of Zrsr1 restored minor intron retention and ameliorated the development of MASH, indicating that dysfunctional minor intron splicing is an emerging pathogenic mechanism that drives MASH progression. Additionally, reductive carboxylation flux triggered by minor intron retention in hepatocytes serves as a crucial checkpoint and potential target for MASH therapy.
Yinkun Fu, Xin Peng, Hongyong Song, Xiaoyun Li, Yang Zhi, Jieting Tang, Yifan Liu, Ding Chen, Wenyan Li, Jing Zhang, Jing Ma, Ming He, Yimin Mao, Xu-Yun Zhao
The interplay between intracellular and intravascular lipolysis is crucial for maintaining circulating lipid levels and systemic energy homeostasis. Adipose triglyceride lipase (ATGL) and lipoprotein lipase (LPL), the primary triglyceride (TG) lipases responsible for these two spatially separate processes, are highly expressed in adipose tissue. Yet, their coordinated regulation remains undetermined. Here, we demonstrate that genetic ablation of G0S2, a specific inhibitory protein of ATGL, completely abolishes diet-induced hypertriglyceridemia and significantly attenuates atherogenesis in mice. These effects are attributed to enhanced whole-body TG clearance, not altered hepatic TG secretion. Specifically, G0S2 deletion increases circulating LPL concentration and activity, predominantly through LPL production from white adipose tissue (WAT). Strikingly, transplantation of G0S2-deficient WAT normalizes plasma TG levels in mice with hypertriglyceridemia. In conjunction with improved insulin sensitivity and decreased ANGPTL4 expression, the absence of G0S2 enhances the stability of LPL protein in adipocytes, a phenomenon that can be reversed upon ATGL inhibition. Collectively, these findings highlight the pivotal role of adipocyte G0S2 in regulating both intracellular and intravascular lipolysis, and the possibility of targeting G0S2 as a viable pharmacological approach to reduce circulating TGs.
Yongbin Chen, Scott M. Johnson, Stephanie D. Burr, Davide Povero, Aaron M. Anderson, Cailin E. McMahon, Jun Liu
Mechanisms that mediate allograft tolerance differ between organs. We have previously shown that Foxp3+ T cell-enriched bronchus-associated lymphoid tissue (BALT) is induced in tolerant murine lung allografts and that these Foxp3+ cells suppress alloimmune responses locally and systemically. Here, we demonstrated that Foxp3+ cells that reside in tolerant lung allografts differed phenotypically and transcriptionally from those in the periphery and were clonally expanded. Using a mouse lung re-transplant model, we showed that recipient Foxp3+ cells were continuously recruited to the BALT within tolerant allografts. We identified distinguishing features of graft-resident and newly recruited Foxp3+ cells and showed that graft-infiltrating Foxp3+ cells acquired transcriptional profiles resembling those of graft-resident Foxp3+ cells over time. Allografts underwent combined antibody-mediated rejection (AMR) and acute cellular rejection (ACR) when recruitment of recipient Foxp3+ cells was prevented. Finally, we showed that local administration of IL-33 could expand and activate allograft-resident Foxp3+ cells providing a platform for the design of tolerogenic therapies for lung transplant recipients. Our findings establish graft-resident Foxp3+ cells as critical orchestrators of lung transplant tolerance and highlight the need to develop lung-specific immunosuppression.
Wenjun Li, Yuriko Terada, Yun Zhu Bai, Yuhei Yokoyama, Hailey M. Shepherd, Junedh M. Amrute, Amit I. Bery, Zhiyi Liu, Jason M. Gauthier, Marina Terekhova, Ankit Bharat, Jon H. Ritter, Varun Puri, Ramsey R. Hachem, Hēth R. Turnquist, Peter T. Sage, Alessandro Alessandrini, Maxim N. Artyomov, Kory J. Lavine, Ruben G. Nava, Alexander S. Krupnick, Andrew E. Gelman, Daniel Kreisel
Aortic aneurysms are potentially fatal focal enlargements of the aortic lumen; the disease burden disease is increasing as the human population ages. Pathological oxidative stress is implicated in development of aortic aneurysms. We pursued a chemogenetic approach to create an animal model of aortic aneurysm formation using a transgenic mouse line DAAO-TGTie2 that expresses yeast D-amino acid oxidase (DAAO) under control of the endothelial Tie2 promoter. In DAAO-TGTie2 mice, DAAO generates the reactive oxygen species hydrogen peroxide (H2O2) in endothelial cells only when provided with D-amino acids. When DAAO-TGTie2 mice are chronically fed D-alanine, the animals become hypertensive and develop abdominal but not thoracic aortic aneurysms. Generation of H2O2 in the endothelium leads to oxidative stress throughout the vascular wall. Proteomic analyses indicate that the oxidant-modulated protein kinase JNK1 is dephosphorylated by the phophoprotein phosphatase DUSP3 in abdominal but not thoracic aorta, causing activation of KLF4-dependent transcriptional pathways that trigger phenotypic switching and aneurysm formation. Pharmacological DUSP3 inhibition completely blocks aneurysm formation caused by chemogenetic oxidative stress. These studies establish that regional differences in oxidant-modulated signaling pathways lead to differential disease progression in discrete vascular beds, and identify DUSP3 as a potential pharmacological target for the treatment of aortic aneurysms.
Apabrita Ayan Das, Markus Waldeck-Weiermair, Shambhu Yadav, Fotios Spyropoulos, Arvind Pandey, Tanoy Dutta, Taylor A. Covington, Thomas Michel
No posts were found with this tag.