Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Review Series

116 series available.
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 11
  • 12
  • Next →

Aging

Series edited by James L. Kirkland

Aging plays a central role in many chronic diseases affecting all systems of the body. Nine hallmarks of aging have been identified: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. This new review series on Aging closely examines how these hallmarks contribute to the initiation and progression of disease. Curated by series editor Dr. James Kirkland, topics span aging’s role in immune system function, cancer, cognitive decline and neurodegenerative disease, and metabolism. The reviews also discuss the latest developments in senotherapeutic strategies that destroy senescent cells, reverse senescence, or target specific aging hallmarks with a critical eye.

Published July 2022


Next-Generation Sequencing in Medicine

Series edited by Ben Ho Park

Next-generation sequencing (NGS) technology enables rapid, high-throughput sequencing of thousands of genes or even entire genomes. The speed and scale of these techniques makes them powerful tools in medicine, creating an opportunity to build and search deep genetic databases, refine diagnoses, and inform precision medicine approaches. In this series, designed by Ben H. Park, five reviews describe how NGS is revolutionizing clinical insights into disease. Wensel et al. compare key NGS methods for investigating the microbiome, emphasizing the need for careful study design and validation as these techniques become more widely adopted. Schuler et al. outline the capabilities and limitations of current genetic testing approaches and provide examples of clinical scenarios in which NGS was combined with other strategies to make a diagnosis. The contribution from Waarts et al. describes how NGS has contributed to the identification of targetable mutations in a range of cancers and discusses challenges to achieving maximal therapeutic benefit of targeted treatments. Halima et al. focus on high-throughput NGS approaches that are revealing the fundamental genetic processes that govern immunity, influencing how we design and implement cancer immunotherapy. Finally, Dang and Park’s review on circulating tumor DNA discusses the advantages of blood-based diagnosis as well as strategies to overcome technical limitations and improve detection of cancer in its earliest stages.

Published June 2022


New Therapeutic Targets in Cardiovascular Diseases

Series edited by Daniel P. Kelly

Cardiovascular diseases remain a leading cause of death worldwide, and treatment is complicated by the inadequacies of available therapies. This collection of reviews, developed by Daniel P. Kelly, explores emerging strategies for treating a range of cardiac pathologies, including: recent discoveries of epigenetic regulators that can be targeted to combat cardiac fibrosis, state of the art in genome-editing therapies, interactions of the vascular endothelium with metabolic tissues, current understanding of myosin modulators, and novel targets for treating dyslipidemia. Together, the reviews provide a broad update on numerous advances in cardiovascular medicine.

Published March 2022


Immunometabolism

Series edited by Jonathan D. Powell

Studies of the metabolic reprogramming that occurs in activated immune cells may reveal critical therapeutic nodes in immune-related disorders and provide guidance for fine-tuning immune-targeted therapies. In this series, curated by Jonathan Powell, reviews focus on the metabolic pathways underlying immune involvement in disease and treatment: strategies to enhance immune memory, vaccine responses, and cancer immunotherapy by optimizing memory T cell metabolism; metabolites that modulate immune function; the metabolites of the tumor microenvironment that reshape immune cell function in the tumor’s favor; metabolism-targeted small molecule inhibitors developed for oncology applications; and dyslipidemia in autoimmune rheumatic diseases. Together, the reviews illustrate the complex energetic dynamics supporting function and dysfunction in the innate and adaptive immune systems.

Published January 2022


Circadian Rhythm

Series edited by Amita Sehgal

Animals, plants, and bacteria all display behavioral patterns that coincide with Earth’s light and dark cycles. These oscillating behaviors are the manifestation of the molecular circadian clock, a highly conserved network that maintains a near 24-hour rhythm even in the absence of light. In mammals, light signals are transmitted via the superchiasmatic nucleus (SCN) in the hypothalamus to synchronize peripheral clocks and coordinate physiological functions with the organism’s active period. This collection of reviews, curated by Amita Sehgal, considers the critical role of the circadian system in human health. Technology, work, and social obligations can disrupt optimal sleep and wake schedules, leaving humans vulnerable to diseases affecting the heart, brain, metabolism, and more. Sleep disorders as well as normal variations in human chronotype may exacerbate circadian disruptions, with profound consequences. These reviews emphasize that ongoing efforts to understand the complexities of human circadian rhythm will be essential for developing chronotherapies and other circadian-based interventions.

Published October 2021


Gut-Brain Axis

Series edited by Ted M. Dawson and Jean-Pierre Raufman

This collection of reviews focuses on the gut-brain axis, highlighting crosstalk between the gastrointestinal tract and the enteric and central nervous systems. While the enteric nervous system can exert independent control over the gut, multi-directional communication with the central nervous system, as well as intestinal epithelial, stromal, immune, and enteroendocrine cells can result in wide-ranging influences on health and disease. The gut microbiome and its metabolites add further complexity to this intricate interactive network. Reviews in this series take a critical approach to describing the role of gut-brain connections in conditions affecting both gut and brain, with the common goal of illuminating the importance of the central and enteric nervous system interface in disease pathogenesis and identifying nodes that offer therapeutic potential.

Published July 2021


Tumor Microenvironment

Series edited by Andrew J. Ewald

Cancer cells in a solid tumor are supported by vasculature, extracellular matrix, nerves, and an immunological milieu collectively known as the tumor microenvironment. Elements within the tumor microenvironment can act in a coordinated fashion to support tumor growth, immune evasion, and metastasis. In this series, reviews curated by Series Editor Andrew Ewald highlight the tumor microenvironment’s complex effects in cancer, describing its modulation of immune cells and the tumor stroma as well as its role in disseminating metastases.

Published March 2021


100th Anniversary of Insulin's Discovery

Series edited by Rexford S. Ahima

Diabetes results from a disturbance in regulating blood sugar. In type 1 diabetes, an autoimmune response triggers the destruction of pancreatic beta cells, which produce insulin that controls glucose uptake in cells, whereas type 2 diabetes is caused by impairments in making or responding to insulin. The discovery of insulin in 1921 led to lifesaving therapy for type 1 diabetes and ushered in the era of modern medicine based on understanding the molecular basis of disease. Curated by JCI’s editor in chief, Rexford S. Ahima, the reviews in this series explore a wide range of topics in diabetes, from insulin’s discovery, insulin secretion and signaling, type 1 diabetes, monogenic diabetes, and insulin resistance syndromes, as well as pharmacological and dietary treatment options for type 2 diabetes. Cumulatively, these reviews highlight the genetic and molecular mechanisms underlying diabetes pathogenesis and discuss existing and potential new therapeutic approaches to treat and manage diabetes.

Published January 2021


Hypoxia-inducible factors in disease pathophysiology and therapeutics

Series edited by Gregg L. Semenza

Maintaining adequate oxygen levels in the organs and tissues of multicellular organisms is essential to preserving cellular metabolism and bioenergetics. When oxygen levels fall below normal physiological levels, hypoxia signaling pathways trigger physiological changes meant to evoke adaptive responses at organismal, tissue, and cellular levels. Hypoxia-inducible factors (HIFs) are positioned at the crux of these oxygen-sensing mechanisms, regulating a multitude of transcriptional programs that control angiogenesis, metabolism, immune function, erythropoiesis, and more. In this issue, a review series created by JCI’s deputy editor Gregg Semenza highlights how HIFs contribute to the pathogenesis and treatment of human disease. The reviews describe the hypoxic conditions that drive or exacerbate pathophysiology in diseases ranging from pulmonary hypertension to cancer. Moreover, they highlight HIF-targeting strategies in preclinical and clinical development, discussing their potential to improve the therapeutic outcomes in these diseases.

Published October 2020


Latency in Infectious Disease

Series edited by Arturo Casadevall

Latency describes the persistence of a microorganism within its host in the absence of clinical symptoms of disease. Both microorganism and host benefit from induction of latency: the microorganism establishes a stable environment that facilitates survival, and the host avoids progressive damage and disease. Latent states have been observed in bacterial, viral, fungal, and parasitic infectious diseases, though the mechanisms differ within each microorganism and host pair. In this issue, a Review Series on Latency in Infectious Disease explores the different strategies that various microorganisms use to achieve latency. Conceptualized by JCI’s Deputy Editor Arturo Casadevall, the series highlights the latency mechanisms employed by herpesviruses, HIV, Cryptococcus neoformans, and Toxoplasma gondii. In addition to describing mechanisms, the reviews outline the detrimental effects of latent disease and recent progress toward treatment and eradication.

Published July 2020


  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 11
  • 12
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts