Animals, plants, and bacteria all display behavioral patterns that coincide with Earth’s light and dark cycles. These oscillating behaviors are the manifestation of the molecular circadian clock, a highly conserved network that maintains a near 24-hour rhythm even in the absence of light. In mammals, light signals are transmitted via the superchiasmatic nucleus (SCN) in the hypothalamus to synchronize peripheral clocks and coordinate physiological functions with the organism’s active period. This collection of reviews, curated by Amita Sehgal, considers the critical role of the circadian system in human health. Technology, work, and social obligations can disrupt optimal sleep and wake schedules, leaving humans vulnerable to diseases affecting the heart, brain, metabolism, and more. Sleep disorders as well as normal variations in human chronotype may exacerbate circadian disruptions, with profound consequences. These reviews emphasize that ongoing efforts to understand the complexities of human circadian rhythm will be essential for developing chronotherapies and other circadian-based interventions.
Circadian disruption is pervasive and can occur at multiple organizational levels, contributing to poor health outcomes at individual and population levels. Evidence points to a bidirectional relationship, in that circadian disruption increases disease severity and many diseases can disrupt circadian rhythms. Importantly, circadian disruption can increase the risk for the expression and development of neurologic, psychiatric, cardiometabolic, and immune disorders. Thus, harnessing the rich findings from preclinical and translational research in circadian biology to enhance health via circadian-based approaches represents a unique opportunity for personalized/precision medicine and overall societal well-being. In this Review, we discuss the implications of circadian disruption for human health using a bench-to-bedside approach. Evidence from preclinical and translational science is applied to a clinical and population-based approach. Given the broad implications of circadian regulation for human health, this Review focuses its discussion on selected examples in neurologic, psychiatric, metabolic, cardiovascular, allergic, and immunologic disorders that highlight the interrelatedness between circadian disruption and human disease and the potential of circadian-based interventions, such as bright light therapy and exogenous melatonin, as well as chronotherapy to improve and/or modify disease outcomes.
Anna B. Fishbein, Kristen L. Knutson, Phyllis C. Zee
Circadian rhythm evolved to allow organisms to coordinate intrinsic physiological functions in anticipation of recurring environmental changes. The importance of this coordination is exemplified by the tight temporal control of cardiac metabolism. Levels of metabolites, metabolic flux, and response to nutrients all oscillate in a time-of-day–dependent fashion. While these rhythms are affected by oscillatory behavior (feeding/fasting, wake/sleep) and neurohormonal changes, recent data have unequivocally demonstrated an intrinsic circadian regulation at the tissue and cellular level. The circadian clock — through a network of a core clock, slave clock, and effectors — exerts intricate temporal control of cardiac metabolism, which is also integrated with environmental cues. The combined anticipation and adaptability that the circadian clock enables provide maximum advantage to cardiac function. Disruption of the circadian rhythm, or dyssynchrony, leads to cardiometabolic disorders seen not only in shift workers but in most individuals in modern society. In this Review, we describe current findings on rhythmic cardiac metabolism and discuss the intricate regulation of circadian rhythm and the consequences of rhythm disruption. An in-depth understanding of the circadian biology in cardiac metabolism is critical in translating preclinical findings from nocturnal-animal models as well as in developing novel chronotherapeutic strategies.
Lilei Zhang, Mukesh K. Jain
Circadian rhythms evolved through adaptation to daily light/dark changes in the environment; they are believed to be regulated by the core circadian clock interlocking feedback loop. Recent studies indicate that each core component executes general and specific functions in metabolism. Here, we review the current understanding of the role of these core circadian clock genes in the regulation of metabolism using various genetically modified animal models. Additionally, emerging evidence shows that exposure to environmental stimuli, such as artificial light, unbalanced diet, mistimed eating, and exercise, remodels the circadian physiological processes and causes metabolic disorders. This Review summarizes the reciprocal regulation between the circadian clock and metabolism, highlights remaining gaps in knowledge about the regulation of circadian rhythms and metabolism, and examines potential applications to human health and disease.
Dongyin Guan, Mitchell A. Lazar
Circadian rhythms, present in most phyla across life, are biological oscillations occurring on a daily cycle. Since the discovery of their molecular foundations in model organisms, many inputs that modify this tightly controlled system in humans have been identified. Polygenic variations and environmental factors influence each person’s circadian rhythm, contributing to the trait known as chronotype, which manifests as the degree of morning or evening preference in an individual. Despite normal variation in chronotype, much of society operates on a “one size fits all” schedule that can be difficult to adjust to, especially for certain individuals whose endogenous circadian phase is extremely advanced or delayed. This is a public health concern, as phase misalignment in humans is associated with a number of adverse health outcomes. Additionally, modern technology (such as electric lights and computer, tablet, and phone screens that emit blue light) and lifestyles (such as shift or irregular work schedules) are disrupting circadian consistency in an increasing number of people. Though medical and lifestyle interventions can alleviate some of these issues, growing research on endogenous circadian variability and sensitivity suggests that broader social changes may be necessary to minimize the impact of circadian misalignment on health.
Nicholas W. Gentry, Liza H. Ashbrook, Ying-Hui Fu, Louis J. Ptáček
Neurodegenerative diseases encompass a large group of conditions that are clinically and pathologically diverse yet are linked by a shared pathology of misfolded proteins. The accumulation of insoluble aggregates is accompanied by a progressive loss of vulnerable neurons. For some patients, the symptoms are motor focused (ataxias), while others experience cognitive and psychiatric symptoms (dementias). Among the shared symptoms of neurodegenerative diseases is a disruption of the sleep/wake cycle that occurs early in the trajectory of the disease and may be a risk factor for disease development. In many cases, the disruption in the timing of sleep and other rhythmic physiological markers immediately raises the possibility of neurodegeneration-driven disruption of the circadian timing system. The aim of this Review is to summarize the evidence supporting the hypothesis that circadian disruption is a core symptom within neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease, and to discuss the latest progress in this field. The Review discusses evidence that neurodegenerative processes may disrupt the structure and function of the circadian system and describes circadian-based interventions as well as timed drug treatments that may improve a wide range of symptoms associated with neurodegenerative disorders. It also identifies key gaps in our knowledge.
Christopher S. Colwell