Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Review Series

New Therapeutic Targets in Cardiovascular Diseases

Series edited by Daniel P. Kelly

Cardiovascular diseases remain a leading cause of death worldwide, and treatment is complicated by the inadequacies of available therapies. This collection of reviews, developed by Daniel P. Kelly, explores emerging strategies for treating a range of cardiac pathologies, including: recent discoveries of epigenetic regulators that can be targeted to combat cardiac fibrosis, state of the art in genome-editing therapies, interactions of the vascular endothelium with metabolic tissues, current understanding of myosin modulators, and novel targets for treating dyslipidemia. Together, the reviews provide a broad update on numerous advances in cardiovascular medicine.

Articles in series

Therapeutic targets for cardiac fibrosis: from old school to next-gen
Joshua G. Travers, … , Marcello Rubino, Timothy A. McKinsey
Joshua G. Travers, … , Marcello Rubino, Timothy A. McKinsey
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e148554. https://doi.org/10.1172/JCI148554.
View: Text | PDF

Therapeutic targets for cardiac fibrosis: from old school to next-gen

  • Text
  • PDF
Abstract

Cardiovascular diseases remain the leading cause of death worldwide, with pathological fibrotic remodeling mediated by activated cardiac myofibroblasts representing a unifying theme across etiologies. Despite the profound contributions of myocardial fibrosis to cardiac dysfunction and heart failure, there currently exist limited clinical interventions that effectively target the cardiac fibroblast and its role in fibrotic tissue deposition. Exploration of novel strategies designed to mitigate or reverse myofibroblast activation and cardiac fibrosis will likely yield powerful therapeutic approaches for the treatment of multiple diseases of the heart, including heart failure with preserved or reduced ejection fraction, acute coronary syndrome, and cardiovascular disease linked to type 2 diabetes. In this Review, we provide an overview of classical regulators of cardiac fibrosis and highlight emerging, next-generation epigenetic regulatory targets that have the potential to revolutionize treatment of the expanding cardiovascular disease patient population.

Authors

Joshua G. Travers, Charles A. Tharp, Marcello Rubino, Timothy A. McKinsey

×

Moving toward genome-editing therapies for cardiovascular diseases
Kiran Musunuru
Kiran Musunuru
Published January 4, 2022
Citation Information: J Clin Invest. 2022;132(1):e148555. https://doi.org/10.1172/JCI148555.
View: Text | PDF

Moving toward genome-editing therapies for cardiovascular diseases

  • Text
  • PDF
Abstract

The rapid invention of genome-editing technologies over the past decade, which has already been transformative for biomedical research, has raised the tantalizing prospect of an entirely new therapeutic modality. Whereas the treatment of chronic cardiovascular diseases has heretofore entailed the use of chronic therapies that typically must be taken repeatedly and frequently for the remainder of the lifetime, genome editing will enable the development of “one-and-done” therapies with durable effects. This Review summarizes the variety of available genome-editing approaches, including nuclease editing, base editing, epigenome editing, and prime editing; illustrates how these various approaches could be implemented as novel therapies for cardiovascular diseases; and outlines a path from technology development to preclinical studies to clinical trials. Although this Review focuses on PCSK9 as an instructive example of the various genome-editing approaches under active investigation, the lessons learned will be broadly applicable to the treatment of a variety of diseases.

Authors

Kiran Musunuru

×

Targeting the vasculature in cardiometabolic disease
Nabil E. Boutagy, … , Abhishek K. Singh, William C. Sessa
Nabil E. Boutagy, … , Abhishek K. Singh, William C. Sessa
Published March 15, 2022
Citation Information: J Clin Invest. 2022;132(6):e148556. https://doi.org/10.1172/JCI148556.
View: Text | PDF

Targeting the vasculature in cardiometabolic disease

  • Text
  • PDF
Abstract

Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.

Authors

Nabil E. Boutagy, Abhishek K. Singh, William C. Sessa

×

Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure
Sharlene M. Day, … , Jil C. Tardiff, E. Michael Ostap
Sharlene M. Day, … , Jil C. Tardiff, E. Michael Ostap
Published March 1, 2022
Citation Information: J Clin Invest. 2022;132(5):e148557. https://doi.org/10.1172/JCI148557.
View: Text | PDF

Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure

  • Text
  • PDF
Abstract

Myosin modulators are a novel class of pharmaceutical agents that are being developed to treat patients with a range of cardiomyopathies. The therapeutic goal of these drugs is to target cardiac myosins directly to modulate contractility and cardiac power output to alleviate symptoms that lead to heart failure and arrhythmias, without altering calcium signaling. In this Review, we discuss two classes of drugs that have been developed to either activate (omecamtiv mecarbil) or inhibit (mavacamten) cardiac contractility by binding to β-cardiac myosin (MYH7). We discuss progress in understanding the mechanisms by which the drugs alter myosin mechanochemistry, and we provide an appraisal of the results from clinical trials of these drugs, with consideration for the importance of disease heterogeneity and genetic etiology for predicting treatment benefit.

Authors

Sharlene M. Day, Jil C. Tardiff, E. Michael Ostap

×

Addressing dyslipidemic risk beyond LDL-cholesterol
Alan R. Tall, … , Ainara G. Gonzalez-Cabodevilla, Ira J. Goldberg
Alan R. Tall, … , Ainara G. Gonzalez-Cabodevilla, Ira J. Goldberg
Published January 4, 2022
Citation Information: J Clin Invest. 2022;132(1):e148559. https://doi.org/10.1172/JCI148559.
View: Text | PDF

Addressing dyslipidemic risk beyond LDL-cholesterol

  • Text
  • PDF
Abstract

Despite the success of LDL-lowering drugs in reducing cardiovascular disease (CVD), there remains a large burden of residual disease due in part to persistent dyslipidemia characterized by elevated levels of triglyceride-rich lipoproteins (TRLs) and reduced levels of HDL. This form of dyslipidemia is increasing globally as a result of the rising prevalence of obesity and metabolic syndrome. Accumulating evidence suggests that impaired hepatic clearance of cholesterol-rich TRL remnants leads to their accumulation in arteries, promoting foam cell formation and inflammation. Low levels of HDL may associate with reduced cholesterol efflux from foam cells, aggravating atherosclerosis. While fibrates and fish oils reduce TRL, they have not been uniformly successful in reducing CVD, and there is a large unmet need for new approaches to reduce remnants and CVD. Rare genetic variants that lower triglyceride levels via activation of lipolysis and associate with reduced CVD suggest new approaches to treating dyslipidemia. Apolipoprotein C3 (APOC3) and angiopoietin-like 3 (ANGPTL3) have emerged as targets for inhibition by antibody, antisense, or RNAi approaches. Inhibition of either molecule lowers TRL but respectively raises or lowers HDL levels. Large clinical trials of such agents in patients with high CVD risk and elevated levels of TRL will be required to demonstrate efficacy of these approaches.

Authors

Alan R. Tall, David G. Thomas, Ainara G. Gonzalez-Cabodevilla, Ira J. Goldberg

×

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts