A line of mice deficient in vitamin D binding protein (DBP) was generated by targeted mutagenesis to establish a model for analysis of DBP's biological functions in vitamin D metabolism and action. On vitamin D–replete diets, DBP–/– mice had low levels of total serum vitamin D metabolites but were otherwise normal. When maintained on vitamin D–deficient diets for a brief period, the DBP–/–, but not DBP+/+, mice developed secondary hyperparathyroidism and the accompanying bone changes associated with vitamin D deficiency. DBP markedly prolonged the serum half-life of 25(OH)D and less dramatically prolonged the half-life of vitamin D by slowing its hepatic uptake and increasing the efficiency of its conversion to 25(OH)D in the liver. After an overload of vitamin D, DBP–/– mice were unexpectedly less susceptible to hypercalcemia and its toxic effects. Peak steady-state mRNA levels of the vitamin D–dependent calbindin-D9K gene were induced by 1,25(OH)2D more rapidly in the DBP–/– mice. Thus, the role of DBP is to maintain stable serum stores of vitamin D metabolites and modulate the rates of its bioavailability, activation, and end-organ responsiveness. These properties may have evolved to stabilize and maintain serum levels of vitamin D in environments with variable vitamin D availability.
Fayez F. Safadi, Paul Thornton, Holly Magiera, Bruce W. Hollis, Michael Gentile, John G. Haddad, Stephen A. Liebhaber, Nancy E. Cooke
Title and authors | Publication | Year |
---|---|---|
Screening of novel peptides that specifically interact with vitamin D bound biocomplex proteins.
Kim T, Lee J, Lee JP, Kim BN, Kim YH, Lee YS, Min J |
Scientific Reports | 2023 |
Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity.
Vo HVT, Nguyen YT, Kim N, Lee HJ |
International journal of molecular sciences | 2023 |
The Cysteine Protease Legumain Is Upregulated by Vitamin D and Is a Regulator of Vitamin D Metabolism in Mice.
Forbord KM, Okla M, Lunde NN, Bosnjak-Olsen T, Arnekleiv G, Hesselson D, Johansen HT, Tang JCY, Kassem M, Solberg R, Jafari A |
Cells | 2023 |