Chromosome translocation to generate the TEL-AML1 (also known as ETV6-RUNX1) chimeric fusion gene is a frequent and early or initiating event in childhood acute lymphoblastic leukemia (ALL). Our starting hypothesis was that the TEL-AML1 protein generates and maintains preleukemic clones and that conversion to overt disease requires secondary genetic changes, possibly in the context of abnormal immune responses. Here, we show that a murine B cell progenitor cell line expressing inducible TEL-AML1 proliferates at a slower rate than parent cells but is more resistant to further inhibition of proliferation by TGF-β. This facilitates the competitive expansion of TEL-AML1–expressing cells in the presence of TGF-β. Further analysis indicated that TEL-AML1 binds to a principal TGF-β signaling target, Smad3, and compromises its ability to activate target promoters. In mice expressing a TEL-AML1 transgene, early, pre-pro-B cells were increased in number and also showed reduced sensitivity to TGF-β–mediated inhibition of proliferation. Moreover, expression of TEL-AML1 in human cord blood progenitor cells led to the expansion of a candidate preleukemic stem cell population that had an early B lineage phenotype (CD34+CD38–CD19+) and a marked growth advantage in the presence of TGF-β. Collectively, these data suggest a plausible mechanism by which dysregulated immune responses to infection might promote the malignant evolution of TEL-AML1–expressing preleukemic clones.
Anthony M. Ford, Chiara Palmi, Clara Bueno, Dengli Hong, Penny Cardus, Deborah Knight, Giovanni Cazzaniga, Tariq Enver, Mel Greaves
Title and authors | Publication | Year |
---|---|---|
Childhood B-Cell Preleukemia Mouse Modeling
Isidro-Hernández M, Alemán-Arteaga S, Casado-García A, Ruiz-Corzo B, Riesco S, Prieto-Matos P, Martínez-Cano J, Sánchez L, Cobaleda C, Sánchez-García I, Vicente-Dueñas C |
International journal of molecular sciences | 2022 |
Mesenchymal Stromal Cells (MSCs): An Ally of B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells in Disease Maintenance and Progression within the Bone Marrow Hematopoietic Niche
Fallati A, Di Marzo N, D\u2019Amico G, Dander E |
Cancers | 2022 |
Regulome analysis in B-acute lymphoblastic leukemia exposes Core Binding Factor addiction as a therapeutic vulnerability
Wray JP, Deltcheva EM, Boiers C, Richardson SЕ, Chhetri JB, Brown J, Gagrica S, Guo Y, Illendula A, Martens JH, Stunnenberg HG, Bushweller JH, Nimmo R, Enver T |
Nature Communications | 2022 |