Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

The central melanocortin system directly controls peripheral lipid metabolism
Ruben Nogueiras, … , Françoise Rohner-Jeanrenaud, Matthias H. Tschöp
Ruben Nogueiras, … , Françoise Rohner-Jeanrenaud, Matthias H. Tschöp
Published September 20, 2007
Citation Information: J Clin Invest. 2007;117(11):3475-3488. https://doi.org/10.1172/JCI31743.
View: Text | PDF
Research Article Metabolism Article has an altmetric score of 13

The central melanocortin system directly controls peripheral lipid metabolism

  • Text
  • PDF
Abstract

Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.

Authors

Ruben Nogueiras, Petra Wiedmer, Diego Perez-Tilve, Christelle Veyrat-Durebex, Julia M. Keogh, Gregory M. Sutton, Paul T. Pfluger, Tamara R. Castaneda, Susanne Neschen, Susanna M. Hofmann, Philip N. Howles, Donald A. Morgan, Stephen C. Benoit, Ildiko Szanto, Brigitte Schrott, Annette Schürmann, Hans-Georg Joost, Craig Hammond, David Y. Hui, Stephen C. Woods, Kamal Rahmouni, Andrew A. Butler, I. Sadaf Farooqi, Stephen O’Rahilly, Françoise Rohner-Jeanrenaud, Matthias H. Tschöp

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 Total
Citations: 5 5 5 7 7 10 11 7 11 19 11 10 15 24 20 13 15 7 1 203
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2022 (7)

Title and authors Publication Year
Association of cord blood asprosin concentration with atherogenic lipid profile and anthropometric indices
Hussein HK, Aubead M, Kzar HH, Karim YS, Amin AH, Al-Gazally ME, Ahmed TI, Jawad MA, Hammid AT, Jalil AT, Mustafa YF, Saleh MM, Heydari H
Diabetology & metabolic syndrome 2022
CX3CL1 Action on Microglia Protects from Diet-Induced Obesity by Restoring POMC Neuronal Excitability and Melanocortin System Activity Impaired by High-Fat Diet Feeding
Banerjee J, Dorfman MD, Fasnacht R, Douglass JD, Wyse-Jackson AC, Barria A, Thaler JP
International journal of molecular sciences 2022
Competing paradigms of obesity pathogenesis: energy balance versus carbohydrate-insulin models.
Ludwig DS, Apovian CM, Aronne LJ, Astrup A, Cantley LC, Ebbeling CB, Heymsfield SB, Johnson JD, King JC, Krauss RM, Taubes G, Volek JS, Westman EC, Willett WC, Yancy WS Jr, Friedman MI
European Journal of Clinical Nutrition 2022
The acromegaly lipodystrophy
Freda PU
Frontiers in Endocrinology 2022
Reciprocal signaling between adipose tissue depots and the central nervous system
Puente-Ruiz SC, Jais A
Frontiers in Cell and Developmental Biology 2022
Characterization of the chicken melanocortin 5 receptor and its potential role in regulating hepatic glucolipid metabolism.
Zhang X, Su J, Huang T, Wang X, Wu C, Li J, Li J, Zhang J, Wang Y
Frontiers in physiology 2022
The Role of Dietary Glycemic Index and Glycemic Load in Mediating Genetic Susceptibility via MC4R s17782313 Genotypes to Affect Cardiometabolic Risk Factors among Apparently Healthy Obese Individuals
Khodarahmi M, Siri G, Mohammadi M, Farhangi MA, Aleseidi S
BioMed Research International 2022

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
Posted by 2 X users
Referenced in 18 patents
On 1 Facebook pages
Highlighted by 1 platforms
204 readers on Mendeley
See more details