Individuals with neurofibromatosis type 1 (NF1) have a high incidence of osteoporosis and osteopenia. However, understanding of the cellular and molecular basis of these sequelae is incomplete. Osteoclasts are specialized myeloid cells that are the principal bone-resorbing cells of the skeleton. We found that Nf1+/– mice contain elevated numbers of multinucleated osteoclasts. Both osteoclasts and osteoclast progenitors from Nf1+/– mice were hyperresponsive to limiting concentrations of M-CSF and receptor activator of NF-κB ligand (RANKL) levels. M-CSF–stimulated p21ras-GTP and Akt phosphorylation was elevated in Nf1+/– osteoclasts associated with gains of function in survival, proliferation, migration, adhesion, and lytic activity. These gains of function are associated with more severe bone loss following ovariectomy as compared with that in syngeneic WT mice. Intercrossing Nf1+/– mice and mice deficient in class 1A PI3K (p85α) restored elevated PI3K activity and Nf1+/– osteoclast functions to WT levels. Furthermore, in vitro–differentiated osteoclasts from NF1 patients also displayed elevated Ras/PI3K activity and increased lytic activity analogous to those in murine Nf1+/– osteoclasts. Collectively, our results identify a what we believe to be a novel cellular and biochemical NF1-haploinsufficient phenotype in osteoclasts that has potential implications for the pathogenesis of NF1 bone disease.
Feng-Chun Yang, Shi Chen, Alexander G. Robling, Xijie Yu, Todd D. Nebesio, Jincheng Yan, Trent Morgan, Xiaohong Li, Jin Yuan, Janet Hock, David A. Ingram, D. Wade Clapp
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 511 | 59 |
132 | 37 | |
Figure | 276 | 25 |
Citation downloads | 48 | 0 |
Totals | 967 | 121 |
Total Views | 1,088 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.