Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Anti-ACVR1 antibodies exacerbate heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1
Senem Aykul, … , Vincent Idone, Sarah J. Hatsell
Senem Aykul, … , Vincent Idone, Sarah J. Hatsell
Published May 5, 2022
Citation Information: J Clin Invest. 2022;132(12):e153792. https://doi.org/10.1172/JCI153792.
View: Text | PDF
Research Article Bone biology Article has an altmetric score of 24

Anti-ACVR1 antibodies exacerbate heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1

  • Text
  • PDF
Abstract

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder whose most debilitating pathology is progressive and cumulative heterotopic ossification (HO) of skeletal muscles, ligaments, tendons, and fascia. FOP is caused by mutations in the type I BMP receptor gene ACVR1, which enable ACVR1 to utilize its natural antagonist, activin A, as an agonistic ligand. The physiological relevance of this property is underscored by the fact that HO in FOP is exquisitely dependent on activation of FOP-mutant ACVR1 by activin A, an effect countered by inhibition of anti–activin A via monoclonal antibody treatment. Hence, we surmised that anti-ACVR1 antibodies that block activation of ACVR1 by ligands should also inhibit HO in FOP and provide an additional therapeutic option for this condition. Therefore, we generated anti-ACVR1 monoclonal antibodies that block ACVR1’s activation by its ligands. Surprisingly, in vivo, these anti-ACVR1 antibodies stimulated HO and activated signaling of FOP-mutant ACVR1. This property was restricted to FOP-mutant ACVR1 and resulted from anti-ACVR1 antibody–mediated dimerization of ACVR1. Conversely, wild-type ACVR1 was inhibited by anti-ACVR1 antibodies. These results uncover an additional property of FOP-mutant ACVR1 and indicate that anti-ACVR1 antibodies should not be considered as therapeutics for FOP.

Authors

Senem Aykul, Lily Huang, Lili Wang, Nanditha M. Das, Sandra Reisman, Yonaton Ray, Qian Zhang, Nyanza Rothman, Kalyan C. Nannuru, Vishal Kamat, Susannah Brydges, Luca Troncone, Laura Johnsen, Paul B. Yu, Sergio Fazio, John Lees-Shepard, Kevin Schutz, Andrew J. Murphy, Aris N. Economides, Vincent Idone, Sarah J. Hatsell

×

Total citations by year

Year: 2025 2024 2023 2022 Total
Citations: 5 8 6 4 23
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2023 (6)

Title and authors Publication Year
A blocking monoclonal antibody reveals dimerization of intracellular domains of ALK2 associated with genetic disorders.
Katagiri T, Tsukamoto S, Kuratani M, Tsuji S, Nakamura K, Ohte S, Kawaguchi Y, Takaishi K
Nature Communications 2023
The computational capabilities of many-to-many protein interaction networks
Klumpe HE, Garcia-Ojalvo J, Elowitz MB, Antebi YE
Cell Systems 2023
Context-dependent TGFβ family signalling in cell fate regulation.
Richardson L, Wilcockson SG, Guglielmi L, Hill CS
Nature reviews. Molecular cell biology 2023
Berberine and aspirin prevent traumatic heterotopic ossification by inhibition of BMP signalling pathway and osteogenic differentiation
Fan J, Gao J, Chen J, Hou J, Liu M, Dang Y, Lin H
Journal of Cellular and Molecular Medicine 2023
Navigating the Complex Landscape of Fibrodysplasia Ossificans Progressiva: From Current Paradigms to Therapeutic Frontiers
Anwar S, Yokota T
Genes & development 2023
Reduced GS Domain Serine/Threonine Requirements of Fibrodysplasia Ossificans Progressiva Mutant Type I BMP Receptor ACVR1 in the Zebrafish.
Allen RS, Jones WD, Hale M, Warder BN, Shore EM, Mullins MC
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2023

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Posted by 14 X users
Referenced in 3 patents
32 readers on Mendeley
See more details