Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines
Sarah A. Smith, … , Hiroshi Nakagawa, Gary D. Wu
Sarah A. Smith, … , Hiroshi Nakagawa, Gary D. Wu
Published November 3, 2020
Citation Information: J Clin Invest. 2021;131(1):e133371. https://doi.org/10.1172/JCI133371.
View: Text | PDF
Research Article Gastroenterology Inflammation

Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines

  • Text
  • PDF
Abstract

As the interface between the gut microbiota and the mucosal immune system, there has been great interest in the maintenance of colonic epithelial integrity through mitochondrial oxidation of butyrate, a short-chain fatty acid produced by the gut microbiota. Herein, we showed that the intestinal epithelium could also oxidize long-chain fatty acids, and that luminally delivered acylcarnitines in bile could be consumed via apical absorption by the intestinal epithelium, resulting in mitochondrial oxidation. Finally, intestinal inflammation led to mitochondrial dysfunction in the apical domain of the surface epithelium that may reduce the consumption of fatty acids, contributing to higher concentrations of fecal acylcarnitines in murine Citrobacter rodentium–induced colitis and human inflammatory bowel disease. These results emphasized the importance of both the gut microbiota and the liver in the delivery of energy substrates for mitochondrial metabolism by the intestinal epithelium.

Authors

Sarah A. Smith, Sayaka A. Ogawa, Lillian Chau, Kelly A. Whelan, Kathryn E. Hamilton, Jie Chen, Lu Tan, Eric Z. Chen, Sue Keilbaugh, Franz Fogt, Meenakshi Bewtra, Jonathan Braun, Ramnik J. Xavier, Clary B. Clish, Barry Slaff, Aalim M. Weljie, Frederic D. Bushman, James D. Lewis, Hongzhe Li, Stephen R. Master, Michael J. Bennett, Hiroshi Nakagawa, Gary D. Wu

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2009 Total
Citations: 9 10 14 10 4 1 48
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2021 (4)

Title and authors Publication Year
Loss of Mucosal p32/gC1qR/HABP1 Triggers Energy Deficiency and Impairs Goblet Cell Differentiation in Ulcerative Colitis
A Sünderhauf, M Hicken, H Schlichting, K Skibbe, M Ragab, A Raschdorf, M Hirose, H Schäffler, A Bokemeyer, D Bettenworth, AG Savitt, S Perner, S Ibrahim, EI Peerschke, B Ghebrehiwet, S Derer, C Sina
CMGH Cellular and Molecular Gastroenterology and Hepatology 2021
Fat of the Gut: Epithelial Phospholipids in Inflammatory Bowel Diseases
LV Boldyreva, MV Morozova, SS Saydakova, EN Kozhevnikova
International journal of molecular sciences 2021
Reframing Nutritional Microbiota Studies To Reflect an Inherent Metabolic Flexibility of the Human Gut: a Narrative Review Focusing on High-Fat Diets
J Sholl, LJ Mailing, TR Wood, DA Garsin
mBio 2021
Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases
N Gasaly, MA Hermoso, M Gotteland
International journal of molecular sciences 2021

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts