Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Podocyte histone deacetylase activity regulates murine and human glomerular diseases
Kazunori Inoue, … , Francis P. Wilson, Shuta Ishibe
Kazunori Inoue, … , Francis P. Wilson, Shuta Ishibe
Published February 18, 2019
Citation Information: J Clin Invest. 2019;129(3):1295-1313. https://doi.org/10.1172/JCI124030.
View: Text | PDF
Research Article Cell biology Nephrology Article has an altmetric score of 13

Podocyte histone deacetylase activity regulates murine and human glomerular diseases

  • Text
  • PDF
Abstract

We identified 2 genes, histone deacetylase 1 (HDAC1) and HDAC2, contributing to the pathogenesis of proteinuric kidney diseases, the leading cause of end-stage kidney disease. mRNA expression profiling from proteinuric mouse glomeruli was linked to Connectivity Map databases, identifying HDAC1 and HDAC2 with the differentially expressed gene set reversible by HDAC inhibitors. In numerous progressive glomerular disease models, treatment with valproic acid (a class I HDAC inhibitor) or SAHA (a pan-HDAC inhibitor) mitigated the degree of proteinuria and glomerulosclerosis, leading to a striking increase in survival. Podocyte HDAC1 and HDAC2 activities were increased in mice podocytopathy models, and podocyte-associated Hdac1 and Hdac2 genetic ablation improved proteinuria and glomerulosclerosis. Podocyte early growth response 1 (EGR1) was increased in proteinuric patients and mice in an HDAC1- and HDAC2-dependent manner. Loss of EGR1 in mice reduced proteinuria and glomerulosclerosis. Longitudinal analysis of the multicenter Veterans Aging Cohort Study demonstrated a 30% reduction in mean annual loss of estimated glomerular filtration rate, and this effect was more pronounced in proteinuric patients receiving valproic acid. These results strongly suggest that inhibition of HDAC1 and HDAC2 activities may suppress the progression of human proteinuric kidney diseases through the regulation of EGR1.

Authors

Kazunori Inoue, Geliang Gan, Maria Ciarleglio, Yan Zhang, Xuefei Tian, Christopher E. Pedigo, Corey Cavanaugh, Janet Tate, Ying Wang, Elizabeth Cross, Marwin Groener, Nathan Chai, Zhen Wang, Amy Justice, Zhenhai Zhang, Chirag R. Parikh, Francis P. Wilson, Shuta Ishibe

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 2019 Total
Citations: 1 6 7 9 6 6 3 38
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2024 (6)

Title and authors Publication Year
LRG1 loss effectively restrains glomerular TGF-β signaling to attenuate DKD in diabetic mice
Xuan Wang, Zeguo Sun, Jia Fu, Zhengying Fang, Weijia Zhang, John He, Kyung Lee
Molecular Therapy 2024
MDM2 accelerated renal senescence via ubiquitination and degradation of HDAC1.
Xiang HL, Yuan Q, Zeng JY, Xu ZY, Zhang HZ, Huang J, Song AN, Xiong J, Zhang C
Acta Pharmacologica Sinica 2024
Role of histone deacetylase inhibitors in non-neoplastic diseases
Zhou C, Zhao D, Wu C, Wu Z, Zhang W, Chen S, Zhao X, Wu S
Heliyon 2024
Epigenetic mechanisms differentially regulate blood pressure and renal dysfunction in male and female Npr1 haplotype mice
Kumar P, Neelamegam K, Ramasamy C, Samivel R, Xia H, Kapusta DR, Pandey KN
The FASEB Journal 2024
Epigenetic DNA Methylation and Protein Homocysteinylation: Key Players in Hypertensive Renovascular Damage
Ren L, Pushpakumar S, Almarshood H, Das SK, Sen U
International Journal of Molecular Sciences 2024
Podocyte Injury and Long-Term Kidney Prognosis in Patients with Lupus Nephritis
Okabe M, Okabayashi Y, Sasaki T, Koike K, Tsuboi N, Matsusaka T, Yokoo T
Kidney360 2024

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 24 X users
50 readers on Mendeley
See more details