Apolipoprotein (apo) E and the two B apolipoproteins, apoB48 and apoB100, are important proteins in human lipoprotein metabolism. Commonly occurring polymorphisms in the genes for apoE and apoB result in amino acid substitutions that produce readily detectable phenotypic differences in these proteins. We studied changes in apoE and apoB phenotypes before and after liver transplantation to gain new insights into apolipoprotein physiology. In all 29 patients that we studied, the postoperative serum apoE phenotype of the recipient, as assessed by isoelectric focusing, converted virtually completely to that of the donor, providing evidence that greater than 90% of the apoE in the plasma is synthesized by the liver. In contrast, the cerebrospinal fluid apoE phenotype did not change to the donor's phenotype after liver transplantation, indicating that most of the apoE in CSF cannot be derived from the plasma pool and therefore must be synthesized locally. The apoB100 phenotype (assessed with immunoassays using monoclonal antibody MB19, an antibody that detects a two-allele polymorphism in apoB) invariably converted to the phenotype of the donor. In four normolipidemic patients, we determined the MB19 phenotype of both the apoB100 and apoB48 in the "chylomicron fraction" isolated from plasma 3 h after a fat-rich meal. Interestingly, the apoB100 in the chylomicron fraction invariably had the phenotype of the donor, indicating that the vast majority of the large, triglyceride-rich apoB100-containing lipoproteins that appear in the plasma after a fat-rich meal are actually VLDL of hepatic origin. The MB19 phenotype of the apoB48 in the plasma chylomicron fraction did not change after liver transplantation, indicating that almost all of the apoB48 in plasma chylomicrons is derived from the intestine. These results were consistent with our immunocytochemical studies on intestinal biopsy specimens of organ donors; using apoB-specific monoclonal antibodies, we found evidence for apoB48, but not apoB100, in donor intestinal biopsy specimens.
M F Linton, R Gish, S T Hubl, E Bütler, C Esquivel, W I Bry, J K Boyles, M R Wardell, S G Young
Title and authors | Publication | Year |
---|---|---|
Effects of macrophage-specific adiponectin expression on lipid metabolism in vivo
N Luo, X Wang, BH Chung, MH Lee, RL Klein, WT Garvey, Y Fu |
American journal of physiology. Endocrinology and metabolism | 2011 |
ApoA-I enhances generation of HDL-like lipoproteins through interaction between ABCA1 and phospholipase Cγ in rat astrocytes
J Ito, Y Nagayasu, A Kheirollah, S Abe-Dohmae, S Yokoyama |
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids | 2011 |
An ABCA1-independent pathway for recycling a poorly lipidated 8.1 nm apolipoprotein E particle from glia
J Fan, S Stukas, C Wong, J Chan, S May, N DeValle, V Hirsch-Reinshagen, A Wilkinson, MN Oda, CL Wellington |
Journal of lipid research | 2011 |
Apolipoprotein E: from lipid transport to neurobiology
PS Hauser, V Narayanaswami, RO Ryan |
Progress in Lipid Research | 2011 |
Cholesterol metabolism in neurons and astrocytes
FW Pfrieger, N Ungerer |
Progress in Lipid Research | 2011 |
Lipid metabolism in the central nervous system and neurodegenerative diseases
H Hayashi |
Folia Pharmacologica Japonica | 2011 |
Lipid Metabolism and Glial Lipoproteins in the Central Nervous System
H Hayashi |
Biological & Pharmaceutical Bulletin | 2011 |
The LXR agonist GW3965 increases apoA-I protein levels in the central nervous system independent of ABCA1
S Stukas, S May, A Wilkinson, J Chan, J Donkin, CL Wellington |
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids | 2011 |
An ABCA1-independent pathway for recycling a poorly lipidated 8.1 nm apolipoprotein E particle from glia
J Fan, S Stukas, C Wong, J Chan, S May, N DeValle, V Hirsch-Reinshagen, A Wilkinson, MN Oda, CL Wellington |
Journal of lipid research | 2011 |
Structure-dependent Impairment of Intracellular Apolipoprotein E4 Trafficking and Its Detrimental Effects Are Rescued by Small-molecule Structure Correctors
J Brodbeck, J McGuire, Z Liu, A Meyer-Franke, ME Balestra, D Jeong, M Pleiss, C McComas, F Hess, D Witter, S Peterson, M Childers, M Goulet, N Liverton, R Hargreaves, S Freedman, KH Weisgraber, RW Mahley, Y Huang |
The Journal of biological chemistry | 2011 |
Effects of macrophage-specific adiponectin expression on lipid metabolism in vivo
N Luo, X Wang, BH Chung, MH Lee, RL Klein, WT Garvey, Y Fu |
American journal of physiology. Endocrinology and metabolism | 2011 |