Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Intestinal myoelectric activity in response to live Vibrio cholerae and cholera enterotoxin.
J R Mathias, … , H E Morton, S Cohen
J R Mathias, … , H E Morton, S Cohen
Published July 1, 1976
Citation Information: J Clin Invest. 1976;58(1):91-96. https://doi.org/10.1172/JCI108464.
View: Text | PDF
Research Article

Intestinal myoelectric activity in response to live Vibrio cholerae and cholera enterotoxin.

  • Text
  • PDF
Abstract

The myoelectric response of the rabbit ileum was studied in response to live Vibrio cholerae culture, a whole cell lysate of cholera, and the purified enterotoxin. Each cholera preparation produced a series of highly organized migrating action potential complexes (MAPC). An MAPC was defined as action potential discharge with a duration of 2.5 s or longer, followed by similar activity on at least one other consecutive electrode site. The mean and modal onset time of MAPC activity occurred 4 h after the infection with live Vibrio cholerae culture, the freeze-dried whole cell lysate preparation, or the purified enterotoxin. After the onset of activity this pattern persisted for the duration of the recording period (up to 12 h). The MAPC had a mean propagation velocity of 0.85+/-0.07 cm/s (mean+/-SEM), which remained constant with time. Direct visual observation of the loop revealed that the MAPC's resulted in contractions that propelled intraluminal contents in an aborad direction. The mean fluid output from the 12-cm ileal loops was 6.4+/-1.1 ml/h (mean+/-SEM). Control experiments consisted of recordings from: (a) a ligated ileal loop into which nothing was placed; (b) a ligated ileal loop into which either uninfected culture broth or 0.9% NaCl solution was injected; (c) a ligated ileal loop infused with 0.9% NaCl solution at a rate of 11.2 ml/h, and (d) rapid injection of 1.0, 2.5, 5.0, or 10.0-ml boluses of 0.9% NaCl into the proximal catheter. MAPC activity was not observed in any of the control experiments. These studies indicate that in addition to a secretory component to cholera, there exists a highly organized MAPC that results in contractions that propel intraluminal contents in an aborad direction.

Authors

J R Mathias, G M Carlson, A J DiMarino, G Bertiger, H E Morton, S Cohen

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 139 1
PDF 51 11
Scanned page 213 0
Citation downloads 55 0
Totals 458 12
Total Views 470
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts