J Robbins
R K Assoian, E E Marcantonio
Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid peptide produced by K cells of the mammalian proximal small intestine and is a potent stimulant of insulin release in the presence of hyperglycemia. However, its relative physiological importance as a postprandial insulinotropic agent is unknown. Using LGIPR2 cells stably transfected with rat GIP receptor cDNA, GIP (1-42) stimulation of cyclic adenosine monophosphate (cAMP) production was inhibited in a concentration-dependent manner by GIP (7-30)-NH2. Competition binding assays using stably transfected L293 cells demonstrated an IC50 for GIP receptor binding of 7 nmol/liter for GIP (1-42) and 200 nmol/liter for GIP (7-30)-NH2, whereas glucagonlike peptide-1 (GLP-1) binding to its receptor on ++betaTC3 cells was minimally displaced by GIP (7-30)-NH2. In fasted anesthetized rats, GIP (1-42) stimulated insulin release in a concentration-dependent manner, an effect abolished by the concomitant intraperitoneal administration of GIP (7-30)-NH2 (100 nmol/ kg). In contrast, glucose-, GLP-1-, and arginine-stimulated insulin release were not affected by GIP (7-30)-NH2. In separate experiments, GIP (7-30)-NH2 (100 nmol/kg) reduced postprandial insulin release in conscious rats by 72%. It is concluded that GIP (7-30)-NH2 is a GIP-specific receptor antagonist and that GIP plays a dominant role in mediating postprandial insulin release.
C C Tseng, T J Kieffer, L A Jarboe, T B Usdin, M M Wolfe
In this study we describe, to our knowledge, the first experiment using the microdialysis technique for studying the release of prostaglandin E2 (PGE2) in the proximal tibia metaphysis secondary to mechanical loading. Nine healthy females, six in the loading group and three controls, mean age 34+/-2 (years+/-SEM), participated. A standard microdialysis catheter was inserted into the tibia metaphyseal bone under local anesthesia. Samplings were done every 15 min under a 2-h equilibration period. Thereafter, heel-drops (one impact per second) with as hard impact of the heels into the floor as possible, were done for 5 min by the subjects in the loading group. The control group performed no exercise. Sampling continued after this for another 2-h period. Basal levels of PGE2 in the proximal tibial metaphysis were determined to a mean of 45+/-10 pg/ml (mean+/-SEM, n = 6). The major finding was a 2.5-3.5-fold increase in the release of PGE2 after mechanical loading. The increase was statistically significant (P < 0.05 compared with basal levels) 1 h after the mechanical loading and persisted for the rest of the experimental period. No major alterations were observed in the control group. In conclusion, our data demonstrate that in situ microdialysis is a useful method for studying the PGE2 production in human bone. Furthermore, a rapid and significant increase in PGE2 levels was noticed in response to dynamic mechanical loading.
K Thorsen, A O Kristoffersson, U H Lerner, R P Lorentzon
All transgenic mouse models for sickle cell disease express residual levels of mouse globins which complicate the interpretation of experimental results. We now report on a mouse expressing high levels of human betaS and 100% human alpha-globin. These mice were created by breeding the alpha-knockout and the mouse beta(major)-deletion to homozygosity in mice expressing human alpha- and betaS-transgenes. These betaS-alpha-knockout mice have accelerated red cell destruction, altered hematological indices, ongoing organ damage, and pathology under ambient conditions which are comparable with those found in alphaH betaS-Ant[betaMDD] mice without introduction of additional mutations which convert betaS into a "super-betaS" such as the doubly mutated betaS-Antilles. This is of particular importance for testing strategies for gene therapy of sickle cell disease. Spin echo magnetic resonance imaging at room air and 100% oxygen demonstrated the presence of blood hypoxia (high levels of deoxygenated hemoglobin) in the liver and kidneys that was absent in control mice. We demonstrate here that transgenic mice can be useful to test new noninvasive diagnostic procedures, since the magnetic resonance imaging technique described here potentially can be applied to patients with sickle cell disease.
M E Fabry, R P Kennan, C Paszty, F Costantini, E M Rubin, J C Gore, R L Nagel
Mutations in the beta-myosin heavy chain gene are believed to cause hypertrophic cardiomyopathy (HCM) by acting as dominant negative alleles. In contrast, a truncated cardiac troponin T (TnT) that causes HCM implies that altered stoichiometry of contractile proteins may also cause cardiac hypertrophy. Wild-type and HCM-mutant (truncated) TnT were studied in a novel quail myotube expression system. Unexpectedly, antibody staining demonstrated incorporation of both forms of human cardiac TnT into the sarcomeres of quail myotubes. Functional studies of wild type and mutant transfected myotubes of normal appearance revealed that calcium-activated force of contraction was normal upon incorporation of wild type TnT, but greatly diminished for the mutant TnT. These findings indicate that HCM-causing mutations in TnT and beta-myosin heavy chain share abnormalities in common, acting as dominant negative alleles that impair contractile performance. This diminished force output is the likely stimulus for hypertrophy in the human heart.
H Watkins, C E Seidman, J G Seidman, H S Feng, H L Sweeney
We have determined previously that IGF-I is dependent on the presence of IGF binding protein-1 (IGFBP-1) to act as a wound healing agent. We sought to determine the mechanism whereby IGFBP-1 is able to enhance IGF-I bioactivity. As IGFBP-1 binds both the alpha5beta1 integrin as well as IGF-I in vitro, we asked which of the following interactions were important: (a) the ability of IGFBP-1 to interact with an integrin receptor, and/or (b) the binding of IGF-I by IGFBP-1. We used an IGF-1 analogue (des(1-3)IGF-I) with a > 100-fold reduction in affinity for IGFBP-1 as well as an IGFBP-1 mutant (WGD-IGFBP-1) which does not associate with the alpha5beta1 integrin to selectively abrogate each of these interactions. We also tested the ability of IGFBP-2, a related binding protein which has an arginine-glycine-aspartate sequence but does not associate with integrin family members, to enhance IGF-I bioactivity. Full-thickness dermal wounds were created on rabbit ears; various combinations of native IGF-I, native IGFBP-1, native IGFBP-2, and their respective analogues/mutants were applied to each wound. Wounds were harvested 7 d later for analysis. Only native IGF-I in combination with native IGFBP-1 was effective as a wound healing agent, enhancing reepithelialization and granulation tissue deposition by 64+/-5 and 83+/-12% over controls (P = 0.008 and 0.016, respectively). The same doses of IGF-I/WGD-IGFBP-1, des(1-3)IGF-I/IGFBP-1, and IGF-I/IGFBP-2 were ineffective. We propose that IGF-I physically interacts with IGFBP-1 and that IGFBP-1 also binds to an integrin receptor, most likely the alpha5beta1 integrin. This interaction is unique to IGFBP-1 as the closely related IGFBP-2 had no effect, a finding consistent with its inability to bind to integrin receptors. Our results suggest that activation of both the IGF-I receptor and the alpha5beta1 integrin is required for IGF-I to stimulate wound healing.
R D Galiano, L L Zhao, D R Clemmons, S I Roth, X Lin, T A Mustoe
Adaptation to stress evokes a variety of biological responses, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and synthesis of a panel of stress-response proteins at cellular levels: for example, expression of thioredoxin (TRX) is significantly induced under oxidative conditions. Glucocorticoids, as a peripheral effector of the HPA axis, exert their actions via interaction with a ligand-inducible transcription factor glucocorticoid receptor (GR). However, how these stress responses coordinately regulate cellular metabolism is still unknown. In this study, we demonstrated that either antisense TRX expression or cellular treatment with H2O2 negatively modulates GR function and decreases glucocorticoid-inducible gene expression. Impaired cellular response to glucocorticoids is rescued by overexpression of TRX, most possibly through the functional replenishment of the GR. Moreover, not only the ligand binding domain but the DNA binding domain of the GR is also suggested to be a direct target of TRX. Together, we here present evidence showing that cellular glucocorticoid responsiveness is coordinately modulated by redox state and TRX level and propose that cross talk between neuroendocrine control of stress responses and cellular antioxidant systems may be essential for mammalian adaptation processes.
Y Makino, K Okamoto, N Yoshikawa, M Aoshima, K Hirota, J Yodoi, K Umesono, I Makino, H Tanaka
An organ culture system was used to study the effect of D-glucose on embryonic kidneys, and to delineate the mechanism(s) relevant to their dysmorphogenesis. Metanephroi were cultured in the presence of 30 mM D-glucose. A notable reduction in the size and population of nephrons was observed. Ureteric bud branches were rudimentary and the acuteness of their tips, the site of nascent nephron formation, was lost. Metanephric mesenchyme was atrophic, had reduced cell replication, and contained numerous apoptotic cells. Competitive reverse transcriptase-PCR analyses and immunoprecipitation studies indicated a decrease in expression of heparan sulfate proteoglycan (perlecan). Status of activated protein-2 was evaluated since its binding motifs are present in the promoter region of the perlecan gene. Decreased binding activity of activated protein-2, related to its phosphorylation, was observed. D-glucose-treated explants also had reduced levels of cellular ATP. Exogenous administration of ATP restored the altered metanephric morphology and reduced [35S]sulfate-incorporated radioactivity associated with perlecan. The data suggest that D-glucose adversely affects the metanephrogenesis by perturbing various cellular phosphorylation events involved in the transcriptional and translational regulation of perlecan. Since perlecan modulates epithelial/mesenchymal interactions, its deficiency may have led to the metanephric dysmorphogenesis and consequential atrophy of the mesenchyme exhibiting accelerated apoptosis.
Y S Kanwar, Z Z Liu, A Kumar, M I Usman, J Wada, E I Wallner
Familial aggregation of insulin-dependent diabetes mellitus (IDDM) is a common phenomenon, but the reasons behind it are poorly understood. To investigate whether there is heterogeneity between familial and nonfamilial forms of IDDM we compared genetic, immunological, and clinical characteristics of diabetic children with and without an affected first-degree relative in a population-based series of Finnish children with IDDM. The frequencies of HLA-DQB1 genotypes known to be associated with high (DQB1*0302/0201) or moderate (*0302/x) IDDM risk in the Finnish population were increased, while the proportions of DQB1 genotypes associated with low or decreased risk for IDDM were reduced in the 121 familial cases as compared with the 574 nonfamilial cases (32.7 vs. 21.3%, 41.3 vs. 35.9%, 18.3 vs. 31.4%, and 7.7 vs. 11.4%, respectively; P = 0.002). The frequencies and serum concentrations of islet cell antibodies, insulin autoantibodies, and antibodies to the 65-kD isoform of glutamic acid decarboxylase were similar at diagnosis in the familial and nonfamilial cases. The 31 first-affected cases in the multiple case families were younger at diagnosis than the nonfamilial cases (6.9 vs. 8.5 yr; P < 0.05). The 90 second-affected familial cases had less severe metabolic decompensation at diagnosis than either the first-affected familial or nonfamilial cases. In conclusion, familial aggregation of IDDM in Finland is at least partly explained by a higher frequency of IDDM susceptibility genes in families with multiple affected individuals. The lack of differences in autoantibody levels between the familial and nonfamilial cases indicates homogeneity rather than heterogeneity in the pathogenetic process of beta cell destruction.
R Veijola, H Reijonen, P Vähäsalo, E Sabbah, P Kulmala, J Ilonen, H K Akerblom, M Knip
Infection remains a leading cause of morbidity and mortality in patients with SLE. To investigate this, previously we assessed the host defense status of autoimmune MRL/lpr mice and found that elaboration of active TGFbeta suppressed neutrophil function and decreased survival in response to Staphylococcus aureus infection. The purpose of the present work was to elucidate the molecular form and the cellular source of the active TGFbeta involved. Here, we report for the first time that TGFbeta1 is found in the active form inside B cells and plasma cells and that it circulates in the plasma complexed with IgG in two murine models of systemic autoimmunity and in some patients with SLE. IgG-bound active TGFbeta1 is many times more potent than uncomplexed active TGFbeta1 for suppression of neutrophil function in vitro and host defense against S. aureus infection in vivo. These data indicate that TGFbeta1 is in the active form inside B cells and plasma cells, that the formation of a complex of IgG and active TGFbeta1 is greatly accelerated in autoimmunity, and that this complex is extremely potent for suppression of PMN function and host defense against bacterial infection.
T E Caver, F X O'Sullivan, L I Gold, H D Gresham
To investigate the in vivo angiogenic activity of placenta growth factor (PIGF) and its heterodimers with vascular endothelial growth factor (VEGF), the induction of neovascularization of these factors in the mouse cornea was studied. VEGF165 is sufficiently potent to stimulate new capillary growth from the limbal vessels. PIGF129/VEGF165 heterodimers also induce corneal neovascularization with a maximal vessel length similar to VEGF165, but with a marked decrease of vessel density. In contrast, PIGF129 has little or no effect in this in vivo angiogenesis assay. The expression of VEGF mRNA and protein is drastically up-regulated by hypoxia in choriocarcinoma cells, whereas expression of PIGF is not affected by the low concentration of oxygen. Up-regulation of VEGF production results in increased formation of PIGF/VEGF heterodimers in these tumor cells. Thus, hypoxia indirectly up-regulates expression levels of PIGF/VEGF heterodimers and modulates VEGF activity when these factors are co-expressed.
Y Cao, P Linden, D Shima, F Browne, J Folkman
Myocardial infarcts heal by scarring because myocardium cannot regenerate. To determine if skeletal myoblasts could establish new contractile tissue, hearts of adult inbred rats were injured by freeze-thaw, and 3-4.5 x 10(6) neonatal skeletal muscle cells were transplanted immediately thereafter. At 1 d the graft cells were proliferating and did not express myosin heavy chain (MHC). By 3 d, multinucleated myotubes were present which expressed both embryonic and fast fiber MHCs. At 2 wk, electron microscopy demonstrated possible satellite stem cells. By 7 wk the grafts began expressing beta-MHC, a hallmark of the slow fiber phenotype; coexpression of embryonic, fast, and beta-MHC continued through 3 mo. Transplanting myoblasts 1 wk after injury yielded comparable results, except that grafts expressed beta-MHC sooner (by 2 wk). Grafts never expressed cardiac-specific MHC-alpha. Wounds containing 2-wk-old myoblast grafts contracted when stimulated ex vivo, and high frequency stimulation induced tetanus. Furthermore, the grafts could perform a cardiac-like duty cycle, alternating tetanus and relaxation, for at least 6 min. Thus, skeletal myoblasts can establish new muscle tissue when grafted into injured hearts, and this muscle can contract when stimulated electrically. Because the grafts convert to fatigue-resistant, slow twitch fibers, this new muscle may be suited to a cardiac work load.
C E Murry, R W Wiseman, S M Schwartz, S D Hauschka
Nutrient-stimulated insulin secretion is dependent upon the generation of metabolic coupling factors in the mitochondria of the pancreatic B cell. To investigate the role of Ca2+ in mitochondrial function, insulin secretion from INS-1 cells stably expressing the Ca2+-sensitive photoprotein aequorin in the appropriate compartments was correlated with changes in cytosolic calcium ([Ca2+]c) and mitochondrial calcium ([Ca2+]m). Glucose and KCl, which depolarize the cell membrane, as well as the Ca2+-mobilizing agonist, carbachol (CCh), cause substantial increases in [Ca2+]m which are associated with smaller rises in [Ca2+]c. The L-type Ca2+-channel blocker, SR7037, abolished the effects of glucose and KCl while attenuating the CCh response. Glucose-induced increases in [Ca2+]m, [Ca2+]c, and insulin secretion all demonstrate a pronounced initial peak followed by a sustained plateau. All three parameters are increased synergistically when glucose and CCh are combined. Finally, [Ca2+]m, [Ca2+]c, and insulin secretion also display desensitization phenomena following repeated additions of the three stimuli. The high sensitivity of [Ca2+]m to Ca2+ influx and the desensitization-resensitization effects can be explained by a model in which the mitochondria of INS-1 cells are strategically located to sense Ca2+ influx through plasma membrane Ca2+ channels. In conclusion, the correlation of [Ca2+]m and [Ca2+]c with insulin secretion may indicate a fundamental role for Ca2+ in the adaptation of oxidative metabolism to the generation of metabolic coupling factors and the energy requirements of exocytosis.
E D Kennedy, R Rizzuto, J M Theler, W F Pralong, C Bastianutto, T Pozzan, C B Wollheim
Tumor contamination of bone marrow (BM) and peripheral blood (PB) may affect the outcome of patients receiving high dose chemotherapy with autologous transplantation of hematopoietic stem cell products. In this report, we demonstrate that replication defective adenoviral vectors containing the cytomegalovirus (CMV) or DF3/MUC1 carcinoma-selective promoter can be used to selectively transduce contaminating carcinoma cells. Adenoviral-mediated reporter gene expression in breast cancer cells was five orders of magnitude higher than that found in BM, PB, and CD34+ cells. Our results demonstrate that CD34+ cells have low to undetectable levels of integrins responsible for adenoviral internalization. We show that adenoviral-mediated transduction of a reporter gene can detect one breast cancer cell in 5 x 10(5) BM or PB cells with a vector containing the DF3/MUC1 promoter. We also show that transduction of the HSV-tk gene for selective killing by ganciclovir can be exploited for purging cancer cells from hematopoietic stem cell populations. The selective expression of TK followed by ganciclovir treatment resulted in the elimination of 6-logs of contaminating cancer cells. By contrast, there was little effect on CFU-GM and BFU-E formulation or on long term culture initiating cells. These results indicate that adenoviral vectors with a tumor-selective promoter provide a highly efficient and effective approach for the detection and purging of carcinoma cells in hematopoietic stem cell preparations.
L Chen, M Pulsipher, D Chen, C Sieff, A Elias, H A Fine, D W Kufe
To understand the molecular mechanisms that are responsible for the B cell overactivity that is observed in patients with SLE, we have conducted experiments in which the surface immunoglobulin (sIg)-mediated early cell signaling events were studied. The anti-sIgM-mediated free intracytoplasmic calcium ([Ca2+]i) responses were significantly higher in SLE B cells compared with responses of normal individuals and to those of patients with other systemic autoimmune rheumatic diseases. The anti-IgD mAb induced [Ca2+]i responses were also higher in lupus B cells than in controls. The magnitude of anti-sIgM-mediated Ca2+ release from intracellular stores was also increased in B cells from SLE patients compared with normal controls. The amount of inositol phosphate metabolites produced upon crosslinking of sIgM was slightly higher in patients with lupus than in normal controls, although the difference was not statistically significant. In contrast, the degree of anti-sIgM-induced protein tyrosine phosphorylation was obviously increased in lupus patients. Our study demonstrates clearly for the first time that SLE B cells exhibit aberrant early signal transduction events, including augmented calcium responses after crosslinking of the B cell receptor and increased antigen-receptor-mediated phosphorylation of protein tyrosine residues. Because the above abnormalities did not correlate with disease activity or treatment status, we propose that they may have pathogenic significance.
S N Liossis, B Kovacs, G Dennis, G M Kammer, G C Tsokos
Although dihydrotestosterone (DHT) is the principal androgen in the prostate, testosterone can also act as an androgen in this tissue. To determine the relative potencies of testosterone and DHT in preventing prostate regression, castrated rats were implanted for 4 d with varying doses of testosterone in the presence or absence of the 5alpha-reductase inhibitor finasteride. In the absence of finasteride, testosterone in the prostate is converted to DHT, creating an intraprostatic DHT dose response. In the presence of finasteride, this conversion is blocked, and an intraprostatic testosterone dose response is achieved. DHT was 2.4 times more potent than testosterone at maintaining normal prostate weight and duct lumen mass, a measure of epithelial cell function. The two androgens were equipotent at preventing DNA fragementation and expression of testosterone-repressed prostate message, two measures of apoptosis (cell death). The intraprostatic testosterone concentration that results from finasteride treatment in rats is sufficient to inhibit apoptosis but will not maintain normal epithelial cell activity. In conclusion, whereas DHT is more potent than testosterone at stimulating prostate epithelial cell function as measured by ductal mass, the two androgens are equipotent at preventing prostate cell death after castration. These results explain why finasteride causes prostate involution in the rat with minimal evidence of prostate cell death.
A S Wright, L N Thomas, R C Douglas, C B Lazier, R S Rittmaster
Experiments were performed to test the hypothesis that diabetes mellitus is associated with impaired afferent arteriolar responsiveness to opening of voltage-gated calcium channels. Diabetes was induced by injection of streptozocin (65 mg/kg, i.v.) and insulin was administered via an osmotic minipump to achieve moderate hyperglycemia. Sham rats received vehicle treatments. 2 wk later, the in vitro blood-perfused juxtamedullary nephron technique was used to allow videomicroscopic measurement of afferent arteriolar contractile responses to increasing bath concentrations of either Bay K 8644 or K+. Baseline afferent arteriolar diameter in kidneys from diabetic rats (26.4+/-1.2 microm) exceeded that of Sham rats (19.7+/-1.0 microm). Bay K 8644 evoked concentration-dependent reductions in afferent diameter in both groups of kidneys; however, arterioles from Sham rats responded to 1 nM Bay K 8644 while 100 nM Bay K 8644 was required to contract arterioles from diabetic rats. The EC50 for K+-induced reductions in afferent arteriolar diameter was greater in diabetic kidneys (40+/-4 mM) than in kidneys from Sham rats (28+/-4 mM; P < 0.05). In afferent arterioles isolated by microdissection from Sham rats and loaded with fura 2, increasing bath [K+] from 5 to 40 mM evoked a 98+/-12 nM increase in intracellular Ca2+ concentration ([Ca2+]i). [Ca2+]i responses to 40 mM K+ were suppressed in afferent arterioles from diabetic rats (delta = 63+/-5 nM), but were normalized by decreasing bath glucose concentration from 20 to 5 mM. These observations indicate that the early stage of insulin-dependent diabetes mellitus is associated with a functional defect in afferent arteriolar L-type calcium channels, an effect which may contribute to suppressed afferent arteriolar vasoconstrictor responsiveness and promote glomerular hyperfiltration.
P K Carmines, K Ohishi, H Ikenaga
Vulnerable areas of atherosclerotic plaques often contain lipid-laden macrophages and display matrix metalloproteinase activity. We hypothesized that reactive oxygen species released by macrophage-derived foam cells could trigger activation of latent proforms of metalloproteinases in the vascular interstitium. We showed that in vivo generated macrophage foam cells produce superoxide, nitric oxide, and hydrogen peroxide after isolation from hypercholesterolemic rabbits. Effects of these reactive oxygens and that of peroxynitrite, likely to result from simultaneous production of nitric oxide and superoxide, were tested in vitro using metalloproteinases secreted by cultured human vascular smooth muscle cells. Enzymes in culture media or affinity-purified (pro-MMP-2 and MMP-9) were examined by SDS-PAGE zymography, Western blotting, and enzymatic assays. Under the conditions used, incubation with xanthine/xanthine oxidase increased the amount of active gelatinases, while nitric oxide donors had no noticeable effect. Incubation with peroxynitrite resulted in nitration of MMP-2 and endowed it with collagenolytic activity. Hydrogen peroxide treatment showed a catalase-reversible biphasic effect (gelatinase activation at concentrations of 4 microM, inhibition at > or = 10-50 microM). Thus, reactive oxygen species can modulate matrix degradation in areas of high oxidant stress and could therefore contribute to instability of atherosclerotic plaques.
S Rajagopalan, X P Meng, S Ramasamy, D G Harrison, Z S Galis
Absorption of urea in the renal inner medullary collecting duct (IMCD) contributes to hypertonicity in the medullary interstitium which, in turn, provides the osmotic driving force for water reabsorption. This mechanism is regulated by vasopressin via a cAMP-dependent pathway and activation of a specialized urea transporter located in the apical membrane. We report here the cloning of a novel urea transporter, designated UT1, from the rat inner medulla which is functionally and structurally distinct from the previously reported kidney urea transporter UT2. UT1 expressed in Xenopus oocytes mediated passive transport of urea that was inhibited by phloretin and urea analogs but, in contrast to UT2, was strongly stimulated by cAMP agonists. Sequence comparison revealed that the coding region of UT1 cDNA contains the entire 397 amino acid residue coding region of UT2 and an additional 1,596 basepair-stretch at the 5' end. This stretch encodes a novel 532 amino acid residue NH2-terminal domain that has 67% sequence identity with UT2. Thus, UT1 consists of two internally homologous portions that have most likely arisen by gene duplication. Studies of the rat genomic DNA further indicated that UT1 and UT2 are derived from a single gene by alternative splicing. Based on Northern analysis and in situ hybridization, UT1 is expressed exclusively in the IMCD, particularly in its terminal portion. Taken together, our data show that UT1 corresponds to the previously characterized vasopressin-regulated urea transporter in the apical membrane of the terminal IMCD which plays a critical role in renal water conservation.
C Shayakul, A Steel, M A Hediger
Progress in the treatment of hepatocellular carcinoma (HCC), a common tumor worldwide, has been disappointing. Inhibitors of topoisomerases are being widely studied as potential inducers of tumor cell apoptosis. Our aims were to determine whether topoisomerase-directed drugs would induce apoptosis in a human HCC cell line (Hep 3B) and, if so, to investigate the mechanism. The topoisomerase I poison camptothecin (CPT) induced apoptosis of Hep 3B cells in a time- and concentration-dependent manner. In contrast, the topoisomerase II poison etoposide failed to induce apoptosis despite the apparent stabilization of topoisomerase II-DNA complexes. Unexpectedly, CPT-induced apoptosis in this cell type occurred without any detectable cleavage of poly(ADP-ribose) polymerase or lamin B, polypeptides that are commonly cleaved in other cell types undergoing apoptosis. Likewise, Hep 3B cell apoptosis occurred without a detectable increase in interleukin-1beta-converting enzyme (ICE)-like or cysteine protease P32 (CPP32)-like protease activity. In contrast, trypsin-like protease activity (cleavage of Boc-Val-Leu-Lys-chloromethylaminocoumarin in situ) increased threefold in cells treated with CPT but not etoposide. Tosyl-lysyl chloromethyl ketone inhibited the trypsin-like protease activity and diminished CPT-induced apoptosis. These data demonstrate that (a) apoptosis is induced in Hep 3B cells after stabilization of topoisomerase I-DNA complexes but not after stabilization of topoisomerase II-DNA complexes as measured by alkaline filter elution; (b) Hep 3B cell apoptosis occurs without activation of ICE-like and CPP32-like protease activity; and (c) a trypsin-like protease activity appears to contribute to apoptosis in this cell type.
P N Adjei, S H Kaufmann, W Y Leung, F Mao, G J Gores
The identification of class II binding peptide epitopes from autoimmune disease-related antigens is an essential step in the development of antigen-specific immune modulation therapy. In the case of type 1 diabetes, T cell and B cell reactivity to the autoantigen glutamic acid decarboxylase 65 (GAD65) is associated with disease development in humans and in nonobese diabetic (NOD) mice. In this study, we identify two DRB1*0401-restricted T cell epitopes from human GAD65, 274-286, and 115-127. Both peptides are immunogenic in transgenic mice expressing functional DRB1*0401 MHC class II molecules but not in nontransgenic littermates. Processing of GAD65 by antigen presenting cells (APC) resulted in the formation of DRB1*0401 complexes loaded with either the 274-286 or 115-127 epitopes, suggesting that these naturally derived epitopes may be displayed on APC recruited into pancreatic islets. The presentation of these two T cell epitopes in the islets of DRB1*0401 individuals who are at risk for type 1 diabetes may allow for antigen-specific recruitment of regulatory cells to the islets following peptide immunization.
L S Wicker, S L Chen, G T Nepom, J F Elliott, D C Freed, A Bansal, S Zheng, A Herman, A Lernmark, D M Zaller, L B Peterson, J B Rothbard, R Cummings, P J Whiteley
Although the clinical efficacy of prostaglandins (PGs), especially on gastric mucosal injuries induced by nonsteroidal antiinflammatory drugs, is widely appreciated, their mechanism of action, apart from acid suppression, is quite unclear. In this study, we have established a primary culture system of human gastric fibroblasts and clearly demonstrated that PGs strongly induce the expression of hepatocyte growth factor (HGF) in the fibroblasts, which is mediated by PGE specific receptor, EP2 or EP4. Since HGF facilitates repair and protection of gastric epithelial cells in a paracrine manner, it is assumed that some of the beneficial effects of PGs may be mediated by HGF. To confirm this assumption, we established a simplified in vitro culture gastric mucosal model which consists of gastric epithelial cells and gastric fibroblasts. Using the model, we performed a round wound restitution assay. PGE1 remarkably accelerated restitution which was completely inhibited by anti-HGF antibody, indicating that the action was mediated by HGF. To confirm these in vitro data, we further demonstrated that HGF mRNA expression is downregulated at the edges of nonsteroidal antiinflammatory drug-induced gastric ulcers where PGs should be depleted. In summary, we proposed that gastric fibroblasts are newly recognized targets of PGs, and HGF produced by human gastric fibroblasts may be a key factor for anti-ulcer action of PGs in the stomach.
M Takahashi, S Ota, Y Hata, Y Mikami, N Azuma, T Nakamura, A Terano, M Omata
We assessed the magnitude of the genetic component in the variation of circulating levels of insulin-like growth factors I and II (IGF-I and IGF-II), and their binding proteins IGFBP-1 and IGFBP-3 by measuring their serum concentrations in 32 monozygotic and 47 dizygotic adult twin pairs of the same sex. The intrapair correlation for the IGF-I levels was r = 0.41 (P < 0.009) for monozygotic twins and r = 0.12 (P < 0.22) for dizygotic twins. For the IGF-II concentration the intrapair correlations were r = 0.66 (P < 0.0001) for the monozygotic and r = 0.34 (P < 0.01) for the dizygotic twins. No significant intrapair correlation was found for IGFBP-1 levels in either group. The correlations for IGFBP-3 concentration were r = 0.65 (P < 0.0001) and r = 0.23 (P < 0.06) for monozygotic and dizygotic twins, respectively. Women had higher IGF-II levels than men (635+/-175 vs. 522+/-144 microg/liter; P < 0.0001) and IGFBP-3 levels were also higher in women compared with men (5441+/-1018 vs. 4496+/-1084 microg/liter; P < 0.001). The proportion of variance attributable to genetic effects was 38% for the IGF-I concentration, 66% for the IGF-II concentration, and 60% for the IGFBP-3 concentration. No significant heritability was found for the IGFBP-1 concentrations. Our results show that, in adults, there is a substantial genetic contribution responsible for interindividual variation of the circulating levels of IGF-I, IGF-II, and IGFBP-3, but not for the IGFBP-1 levels.
M Harrela, H Koistinen, J Kaprio, M Lehtovirta, J Tuomilehto, J Eriksson, L Toivanen, M Koskenvuo, P Leinonen, R Koistinen, M Seppälä
Lamina propria (LP) T cells respond poorly to a proliferative stimulus delivered via TCR/CD3 pathway, but retain considerable ability to respond to a stimulus delivered via CD2 costimulatory or accessory pathway. In the present study, we showed first that unstimulated LP T cells, as compared to unstimulated peripheral blood (PB) T cells, exhibit an increased level of apoptosis which is further increased following CD2 pathway stimulation, but not following via TCR/CD3 pathway stimulation. We next showed that IL-2 had a sparing effect on apoptosis of unstimulated LP T cells in that IL-2 decreased and anti-IL-2 increased apoptosis of these cells; in contrast, IL-2 had no effect on apoptosis of CD2-pathway stimulated cells. Finally, we showed that increased apoptosis of LP T cells induced by CD2-pathway stimulation is inhibited when Fas antigen is blocked by a nonstimulatory anti-Fas antibody. These studies suggest that LP T cells are characterized by increased susceptibility to Fas-mediated apoptosis most due to a downstream change in the Fas signaling pathway. Given that IFN-gamma secretion is significantly increased in LP T cells in which apoptosis is inhibited, this feature of LP T cells may represent a mechanism of regulating detrimental immune responses in the mucosal environment.
M Boirivant, R Pica, R DeMaria, R Testi, F Pallone, W Strober
Fluid shear stress modulates vascular function and structure by stimulating mechanosensitive endothelial cell signal events. Cell adhesion, mediated by integrin-matrix interactions, also regulates intracellular signaling by mechanosensitive events. To gain insight into the role of integrin-matrix interactions, we compared tyrosine phosphorylation and extracellular signal-regulated kinase (ERK1/2) activation in adhesion- and shear stress-stimulated human umbilical vein endothelial cells (HUVEC). Adhesion of HUVEC to fibronectin, but not to poly-L-lysine, rapidly activated ERK1/2. Fluid shear stress (12 dyn/cm2) enhanced ERK1/2 activation stimulated by adhesion, suggesting the presence of a separate pathway. Two differences in signal transduction were identified: focal adhesion kinase phosphorylation was increased rapidly by adhesion but not by shear stress; and ERK1/2 activation in response to adhesion was inhibited to a significantly greater extent when actin filaments were disrupted by cytochalasin D. Two similarities in activation of ERK1/2 were observed: protein kinase C (PKC) activity was necessary as shown by complete inhibition when PKC was downregulated; and an herbimycin-sensitive (genistein- and tyrphostin-insensitive) tyrosine kinase was required. c-Src was identified as a candidate tyrosine kinase as it was activated by both shear stress and adhesion. These findings suggest that adhesion and shear stress activate ERK1/2 via a shared pathway that involves an herbimycin-sensitive tyrosine kinase and PKC. In addition, shear stress activates ERK1/2 through another pathway that is partially independent of cytoskeletal integrity.
M Takahashi, B C Berk
Reactive oxygen intermediates (ROI) contribute to neuronal injury in cerebral ischemia and trauma. In this study we explored the role of ROI in bacterial meningitis. Meningitis caused by group B streptococci in infant rats led to two distinct forms of neuronal injury, areas of necrosis in the cortex and neuronal loss in the dentate gyrus of the hippocampus, the latter showing evidence for apoptosis. Staining of brain sections with diaminobenzidine after perfusion with manganese buffer and measurement of lipid peroxidation products in brain homogenates both provided evidence that meningitis led to the generation of ROI. Treatment with the radical scavenger alpha-phenyl-tert-butyl nitrone (PBN) (100 mg/kg q8h i.p.) beginning at the time of infection completely abolished ROI detection and the increase in lipidperoxidation. Cerebral cortical perfusion was reduced in animals with meningitis to 37.5+/-21.0% of uninfected controls (P < 0.05), and PBN restored cortical perfusion to 72.0+/-8.1% of controls (P < 0.05 vs meningitis). PBN also completely prevented neuronal injury in the cortex and hippocampus, when started at the time of infection (P < 0.02), and significantly reduced both forms of injury, when started 18 h after infection together with antibiotics (P < 0.004 for cortex and P < 0.001 for hippocampus). These data indicate that the generation of ROI is a major contributor to cerebral ischemia and necrotic and apoptotic neuronal injury in this model of neonatal meningitis.
S L Leib, Y S Kim, L L Chow, R A Sheldon, M G Täuber
Recombinant adenoviruses are highly efficient at transferring foreign genes in vivo. However, duration of gene expression is limited by the host antiviral immune response which precludes expression upon viral readministration. We tested the feasibility of prolonging gene expression by induction of central tolerance to adenoviral antigens in bilirubin-UDP-glucuronosyltransferase-1 (BUGT1)-deficient Gunn rats. Tolerance was induced by intraperitoneal injection of antilymphocyte serum, followed by intrathymic inoculation of one of the following: a recombinant adenovirus (Ad), adenovirus human UDP-glucuronosyltransferase (Ad-hBUGT1) carrying the hBUGT1 gene; a protein extract of the same virus; or viral infected hepatocytes. Controls received intrathymic injections of normal saline. After 12 d all groups were injected intravenously with 5 x 10(9) pfu of either Ad-hBUGT1 or adenovirus beta-galactosidase (Ad-LacZ) (expressing the Escherichia coli beta-galactosidase [LacZ] gene). In all three groups of tolerized rats, hBUGT1 was expressed in the liver after administration of Ad-hBUGT1, with glucuronidation of biliary bilirubin of above 95%. Serum bilirubin levels decreased from 7.2 to 1.8 mg/dl within 1 wk and remained low for 7 wk. Similar findings were observed following repeat injections given on days 45 and 112. In control rats serum bilirubin levels were reduced for only 4 wk, and viral readministration was ineffective. In all tolerized groups, but not in controls, there was a marked inhibition of appearance of neutralizing antibodies and cytotoxic lymphocytes against the recombinant adenovirus. Injection of wild type adenovirus-5 (Ad5) into the tolerized rats elicited a wild type-specific cytotoxic lymphocyte response. This is the first demonstration of Ad-directed long-term correction of an inherited metabolic disease following central tolerization with thymic antigen.
Y Ilan, P Attavar, M Takahashi, A Davidson, M S Horwitz, J Guida, N R Chowdhury, J R Chowdhury
To circumvent the embryonic lethality of a complete deficiency in insulin-like growth factor 1 (IGF-1), we generated mice homozygous for a site-specific insertional event that created a mutant IGF-1 allele (igf1m). These mice have IGF-1 levels 30% of wild type yet survive to adulthood, thereby allowing physiological analysis of the phenotype. Miniaturized catheterization technology revealed elevated conscious blood pressure in IGF-1(m/m) mice, and measurements of left ventricular contractility were increased. Adenylyl cyclase activity was enhanced in IGF-1(m/m) hearts, without an increase in beta-adrenergic receptor density, suggesting that crosstalk between IGF-1 and beta-adrenergic signaling pathways may mediate the increased contractility. The hypertrophic response of the left ventricular myocardium in response to aortic constriction, however, was preserved in IGF-1(m/m) mice. We conclude that chronic alterations in IGF-1 levels can selectively modulate blood pressure and left ventricular function, while not affecting adaptive myocardial hypertrophy in vivo.
G Lembo, H A Rockman, J J Hunter, H Steinmetz, W J Koch, L Ma, M P Prinz, J Ross Jr, K R Chien, L Powell-Braxton