Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 1 policy sources
Referenced in 1 patents
24 readers on Mendeley
  • Article usage
  • Citations to this article (69)

Advertisement

Research Article Free access | 10.1172/JCI119061

In situ microdialysis in bone tissue. Stimulation of prostaglandin E2 release by weight-bearing mechanical loading.

K Thorsen, A O Kristoffersson, U H Lerner, and R P Lorentzon

Department of Orthopedics, University of Umeå, Sweden.

Find articles by Thorsen, K. in: JCI | PubMed | Google Scholar

Department of Orthopedics, University of Umeå, Sweden.

Find articles by Kristoffersson, A. in: JCI | PubMed | Google Scholar

Department of Orthopedics, University of Umeå, Sweden.

Find articles by Lerner, U. in: JCI | PubMed | Google Scholar

Department of Orthopedics, University of Umeå, Sweden.

Find articles by Lorentzon, R. in: JCI | PubMed | Google Scholar

Published December 1, 1996 - More info

Published in Volume 98, Issue 11 on December 1, 1996
J Clin Invest. 1996;98(11):2446–2449. https://doi.org/10.1172/JCI119061.
© 1996 The American Society for Clinical Investigation
Published December 1, 1996 - Version history
View PDF
Abstract

In this study we describe, to our knowledge, the first experiment using the microdialysis technique for studying the release of prostaglandin E2 (PGE2) in the proximal tibia metaphysis secondary to mechanical loading. Nine healthy females, six in the loading group and three controls, mean age 34+/-2 (years+/-SEM), participated. A standard microdialysis catheter was inserted into the tibia metaphyseal bone under local anesthesia. Samplings were done every 15 min under a 2-h equilibration period. Thereafter, heel-drops (one impact per second) with as hard impact of the heels into the floor as possible, were done for 5 min by the subjects in the loading group. The control group performed no exercise. Sampling continued after this for another 2-h period. Basal levels of PGE2 in the proximal tibial metaphysis were determined to a mean of 45+/-10 pg/ml (mean+/-SEM, n = 6). The major finding was a 2.5-3.5-fold increase in the release of PGE2 after mechanical loading. The increase was statistically significant (P < 0.05 compared with basal levels) 1 h after the mechanical loading and persisted for the rest of the experimental period. No major alterations were observed in the control group. In conclusion, our data demonstrate that in situ microdialysis is a useful method for studying the PGE2 production in human bone. Furthermore, a rapid and significant increase in PGE2 levels was noticed in response to dynamic mechanical loading.

Version history
  • Version 1 (December 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article (69)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 1 patents
24 readers on Mendeley
See more details