Recombinant adenoviruses are highly efficient at transferring foreign genes in vivo. However, duration of gene expression is limited by the host antiviral immune response which precludes expression upon viral readministration. We tested the feasibility of prolonging gene expression by induction of central tolerance to adenoviral antigens in bilirubin-UDP-glucuronosyltransferase-1 (BUGT1)-deficient Gunn rats. Tolerance was induced by intraperitoneal injection of antilymphocyte serum, followed by intrathymic inoculation of one of the following: a recombinant adenovirus (Ad), adenovirus human UDP-glucuronosyltransferase (Ad-hBUGT1) carrying the hBUGT1 gene; a protein extract of the same virus; or viral infected hepatocytes. Controls received intrathymic injections of normal saline. After 12 d all groups were injected intravenously with 5 x 10(9) pfu of either Ad-hBUGT1 or adenovirus beta-galactosidase (Ad-LacZ) (expressing the Escherichia coli beta-galactosidase [LacZ] gene). In all three groups of tolerized rats, hBUGT1 was expressed in the liver after administration of Ad-hBUGT1, with glucuronidation of biliary bilirubin of above 95%. Serum bilirubin levels decreased from 7.2 to 1.8 mg/dl within 1 wk and remained low for 7 wk. Similar findings were observed following repeat injections given on days 45 and 112. In control rats serum bilirubin levels were reduced for only 4 wk, and viral readministration was ineffective. In all tolerized groups, but not in controls, there was a marked inhibition of appearance of neutralizing antibodies and cytotoxic lymphocytes against the recombinant adenovirus. Injection of wild type adenovirus-5 (Ad5) into the tolerized rats elicited a wild type-specific cytotoxic lymphocyte response. This is the first demonstration of Ad-directed long-term correction of an inherited metabolic disease following central tolerization with thymic antigen.
Y Ilan, P Attavar, M Takahashi, A Davidson, M S Horwitz, J Guida, N R Chowdhury, J R Chowdhury