J I Smallwood, S E Malawista
A burgeoning number of antigenic targets of the islet cell autoimmunity in IDD have been identified, and more can be anticipated through improved methods for their identification. The challenge for those investigating the pathogenesis of IDD will be to assign the relative importance of these antigens to the development of the disease, and to resolve whether there is a dominant primary immunologic event that is followed by a series of secondary immunizations to a variety of normally sequestered islet cell antigens in the sequence of pathogenic events that culminate in IDD. One interesting observation that may have potential pathogenic implications is the observation that of all islet cell autoantigens described, only two (i.e., 64 kD/GAD, 38 kD) are reactive in their native configurations, implying that recognition of conformational epitopes is most important. This property argues for primary immunizing agents rather than secondary ones after release of denatured antigens and antigenic recognition through their epitopes. Given the complex and multiple physiological functions of islet cells and the continuous variation in their activity, it is reasonable to speculate that the speed of the progression to IDD could vary between individuals with respect to their insulin needs and the relative activities of their islets. Activated islets may express autoantigens that have only limited expression in quiescent islets. The often times striking variation in the severity of insulitis seen in different islets of a single pancreas may be explained by the level of activity of individual islets. Furthermore, disparity in HLA-DR/DQ associations with disease may involve differences in the immunological recognition of autoantigens. Whereas there is still much to learn, it is clear that disease predictability and disease intervention studies have been enhanced through the identification of the islet cell autoantigens in IDD.
M A Atkinson, N K Maclaren
In vitro studies indicate that FFA compete with glucose as an oxidative fuel in muscle and, in addition, stimulate gluconeogenesis in liver. During counterregulation of hypoglycemia, plasma FFA increase and this is associated with an increase in glucose production and a suppression of glucose utilization. To test the hypothesis that FFA mediate changes in glucose metabolism that occur during counterregulation, we examined the effects of acipimox, an inhibitor of lipolysis, on glucose production and utilization ([3-3H]glucose), and incorporation of [U-14C]-alanine into glucose during insulin-induced hypoglycemia. Eight normal volunteers were infused with insulin for 8 h to produce modest hypoglycemia (approximately 3 mM) on two occasions, first without acipimox (control) and then with acipimox administration (250 mg per os at 60 and 240 min). Despite identical plasma insulin concentrations, glucose had to be infused in the acipimox experiments (glucose-clamp technique) to maintain plasma glucose concentrations identical to those in control experiments. Acipimox completely prevented counterregulatory increases in lipolysis so that during the last 4 h plasma FFA were below baseline values and averaged 67 +/- 13 vs. 725 +/- 65 microM in control experiments, P < 0.001. Concomitantly, overall glucose production was reduced by 40% (5.5 +/- 11 vs. 9.3 +/- 0.7 mumol/kg per min, P < 0.001), and gluconeogenesis from alanine was reduced by nearly 70% (0.32 +/- 0.09 vs. 1.00 +/- 0.18 mumol/kg per min, P < 0.001), while glucose utilization increased by 15% (10.8 +/- 1.4 vs. 9.3 +/- 0.7 mumol/kg per min). We conclude that FFA play a critical role in mediating changes in glucose metabolism during counterregulation, and that under these conditions, FFA exert a much more profound effect on hepatic glucose production than on glucose utilization.
C Fanelli, S Calderone, L Epifano, A De Vincenzo, F Modarelli, S Pampanelli, G Perriello, P De Feo, P Brunetti, J E Gerich
We examined the mechanisms of enhanced insulin sensitivity in 9 male healthy athletes (age, 25 +/- 1 yr; maximal aerobic power [VO2max], 57.6 +/- 1.0 ml/kg per min) as compared with 10 sedentary control subjects (age, 28 +/- 2 yr; VO2max, 44.1 +/- 2.3 ml/kg per min). In the athletes, whole body glucose disposal (240-min insulin clamp) was 32% (P < 0.01) and nonoxidative glucose disposal (indirect calorimetry) was 62% higher (P < 0.01) than in the controls. Muscle glycogen content increased by 39% in the athletes (P < 0.05) but did not change in the controls during insulin clamp. VO2max correlated with whole body (r = 0.60, P < 0.01) and nonoxidative glucose disposal (r = 0.64, P < 0.001). In the athletes forearm blood flow was 64% greater (P < 0.05) than in the controls, whereas their muscle capillary density was normal. Basal blood flow was related to VO2max (r = 0.63, P < 0.05) and glucose disposal during insulin infusion (r = 0.65, P < 0.05). The forearm glucose uptake in the athletes was increased by 3.3-fold (P < 0.01) in the basal state and by 73% (P < 0.05) during insulin infusion. Muscle glucose transport protein (GLUT-4) concentration was 93% greater in the athletes than controls (P < 0.01) and it was related to VO2max (r = 0.61, P < 0.01) and to whole body glucose disposal (r = 0.60, P < 0.01). Muscle glycogen synthase activity was 33% greater in the athletes than in the controls (P < 0.05), and the basal glycogen synthase fractional activity was closely related to blood flow (r = 0.88, P < 0.001). In conclusion: (a) athletes are characterized by enhanced muscle blood flow and glucose uptake. (b) The cellular mechanisms of glucose uptake are increased GLUT-4 protein content, glycogen synthase activity, and glucose storage as glycogen. (c) A close correlation between glycogen synthase fractional activity and blood flow suggests that they are causally related in promoting glucose disposal.
P Ebeling, R Bourey, L Koranyi, J A Tuominen, L C Groop, J Henriksson, M Mueckler, A Sovijärvi, V A Koivisto
Parathyroid hormone, dopamine, alpha-adrenergic catecholamines, and angiotensin II regulate renal Na excretion, at least in part through modulation of acute cyclic (c)AMP-induced proximal tubule Na/H antiporter inhibition. The present studies examined the effect of chronic increases in cell cAMP on Na/H antiporter activity in OKP cells. Whereas 8-bromo cAMP acutely inhibited Na/H antiporter activity, chronic application for 6 h led to a 24% increase in Na/H antiporter activity measured 16-20 h after cAMP removal. This chronic persistent activation of the Na/H antiporter required > 2 h exposure. This effect was not a nonspecific effect of 8-bromo cAMP, in that addition of forskolin or forskolin + 3-isobutyl-1-methylxanthine for 6 h also led to a chronic persistent increase in Na/H antiporter activity. Inhibition of protein synthesis with cycloheximide prevented 8-bromo cAMP-induced Na/H antiporter stimulation. Although 8-bromo cAMP addition decreased cell pH by 0.15-0.20 pH U, Na/H antiporter stimulation could be dissociated from cell acidification. In summary, while cAMP acutely inhibits Na/H antiporter activity, it chronically increases antiporter activity. This chronic activation occurs with exogenous addition or endogenous generation of cAMP. These results imply that for hormones that modulate renal Na excretion and proximal tubule Na/H antiporter activity via cAMP and protein kinase A, acute effects may not predict chronic effects.
A Cano, P Preisig, R J Alpern
We treated genetically mast cell-deficient WCB6F1-Sl/Sld mice and the congenic normal (WCB6F1(-)+/+) mice with the c-kit ligand recombinant rat stem cell factor164 (rrSCF164; 100 micrograms/kg per d, subcutaneously) or with vehicle for 21 d, then passively sensitized the mice with anti-dinitrophenol30-40 immunoglobulin E (IgE) antibodies, and 1 d later measured the changes in heart rate, pulmonary dynamic compliance, and pulmonary conductance, and assessed the death rates associated with intravenous challenge of these animals with specific antigen. rrSCF164 treatment induced the development of mast cells in Sl/Sld mice, and these mice exhibited tachycardia, but not death, after challenge with IgE and antigen. rrSCF164 treatment induced mast cell hyperplasia in +/+ mice, but the cardiopulmonary changes associated with passive anaphylaxis in these mice were virtually indistinguishable from those observed in control +/+ mice treated with vehicle instead of rrSCF164. Moreover, the highest dose of antigen challenge produced significantly fewer fatalities in rrSCF164-treated than in vehicle-treated +/+ mice (1/11 vs. 8/11, respectively, P < 0.01). Thus, in normal mice, chronic treatment with rrSCF164 induces mast cell hyperplasia but does not increase, and in certain respects diminishes, the severity of IgE-dependent anaphylactic reactions.
A Ando, T R Martin, S J Galli
Deficiency of the cholesteryl ester transfer protein (CETP) in humans is characterized by markedly elevated plasma concentrations of HDL cholesterol and apoA-I. To assess the metabolism of HDL apolipoproteins in CETP deficiency, in vivo apolipoprotein kinetic studies were performed using endogenous and exogenous labeling techniques in two unrelated homozygotes with CETP deficiency, one heterozygote, and four control subjects. All study subjects were administered 13C6-labeled phenylalanine by primed constant infusion for up to 16 h. The fractional synthetic rates (FSRs) of apoA-I in two homozygotes with CETP deficiency (0.135, 0.134/d) were found to be significantly lower than those in controls (0.196 +/- 0.041/d, P < 0.01). Delayed apoA-I catabolism was confirmed by an exogenous radiotracer study in one CETP-deficient homozygote, in whom the fractional catabolic rate of 125I-apoA-I was 0.139/d (normal 0.216 +/- 0.018/d). The FSRs of apoA-II were also significantly lower in the homozygous CETP-deficient subjects (0.104, 0.112/d) than in the controls (0.170 +/- 0.023/d, P < 0.01). The production rates of apoA-I and apoA-II were normal in both homozygous CETP-deficient subjects. The turnover of apoA-I and apoA-II was substantially slower in both HDL2 and HDL3 in the CETP-deficient homozygotes than in controls. The kinetics of apoA-I and apoA-II in the CETP-deficient heterozygote were not different from those in controls. These data establish that homozygous CETP deficiency causes markedly delayed catabolism of apoA-I and apoA-II without affecting the production rates of these apolipoproteins.
K Ikewaki, D J Rader, T Sakamoto, M Nishiwaki, N Wakimoto, J R Schaefer, T Ishikawa, T Fairwell, L A Zech, H Nakamura
The multiple K+ channels are crucial for repolarization and configuration of the action potential in the neuronal and cardiac cells. In this study, we report the regulatory mechanisms of rapidly inactivating Shaker Kv1.4 channel transcript in the rat heart. Quantitative PCR analysis showed that stimulation with high concentration of KCl, BAY-K 8644, or 12-O-tetradecanoyl phorbol-13-acetate resulted in an immediate and substantial increase (two- to threefold) of Kv1.4 mRNA levels in spontaneously beating myocytes prepared from neonatal rat ventricles. The Kv1.4 mRNA in the ventricle remains at a steady state level after birth and gradually declines with maturation. These results suggest that the Kv1.4 mRNA level is not static and undergoes dynamic modulation by multiple factors that activate intracellular signals. In addition, the expression patterns of Kv1.4 as well as the delayed rectifier Shaker K+ channel Kv1.5 mRNAs were examined in hypertrophied ventricles in which a plateau phase of action potential is remarkably prolonged. The Kv1.5 mRNA level was dramatically repressed while the Kv1.4 mRNA level was remarkably increased. This differential regulation was completely reversed by the normalization of hypertrophy, suggesting that the pathological alterations of K+ channel gene regulation may be involved in the occurrence of ventricular arrhythmias in hypertrophic hearts.
H Matsubara, J Suzuki, M Inada
The immunological mechanisms involved in maintenance of an asymptomatic microfilaremic state (MF) in patients with lymphatic filariasis remain undefined. MF patients have impaired filarial antigen (Ag)-specific lymphocyte proliferation and decreased frequencies (Fo) of Ag-specific T cells, and yet elevated serum IgE and antifilarial IgG4. To investigate the mechanism of Ag-specific anergy in MF patients in contrast to amicrofilaremic individuals with chronic lymphatic obstruction (CP), the Fo of Ag-specific lymphocytes from peripheral blood mononuclear cells secreting either IL-4 or IFN-gamma were assessed by filter spot enzyme-linked immunosorbent assay, and IL-10 and transforming growth factor-beta (TGF-beta) mRNA transcript levels were assessed by a semiquantitative reverse transcriptase polymerase chain reaction technique. The Fo of filaria-specific IL-4-secreting lymphocytes were equivalent in both MF (geometric mean [GM] = 1:11,700) and CP (GM = 1:29,300 P = 0.08), whereas the Fo of IFN-gamma-secreting lymphocytes were lower in MF (GM = 1:39,300) than in CP (GM = 1:4,200, P < 0.01). When the ratio of IL-4/IFN-gamma (T helper type 2 [Th2]/Th1)-secreting cells was examined, MF subjects showed a predominant Th2 response (8:1) compared with a Th1 response in CP individuals (1:4). mRNA transcript levels of IL-10 were also significantly elevated in MF compared with CP individuals (P < 0.01). Further, IL-10 and TGF-beta were shown to have a role in modulating the Ag-specific anergy among MF subjects, in that neutralizing anti-IL-10 or anti-TGF-beta significantly enhanced lymphocyte proliferation response (by 220-1,300%) to filarial Ags in MF individuals. These findings demonstrate that MF subjects respond to parasite antigen by producing a set of suppressive cytokines that may facilitate persistence of the parasite within humans while producing little clinical disease.
C L King, S Mahanty, V Kumaraswami, J S Abrams, J Regunathan, K Jayaraman, E A Ottesen, T B Nutman
Monocytes infiltrate the portal space during chronic liver inflammation. Monocyte chemotactic protein-1 (MCP-1) is a cytokine that induces monocyte chemotaxis and activation. We investigated if human liver fat-storing cells (FSC) secrete MCP-1, and the mechanisms that regulate MCP-1 production. Unstimulated FSC secrete MCP-1 as measured by radioimmunoassay as well as a chemotactic assay and express mRNA that encodes for this cytokine. A two- to threefold increase in MCP-1 secretion was observed when FSC were treated with either interleukin-1 alpha (IL-1 alpha) or interferon-gamma (IFN-gamma). Tumor necrosis factor-alpha (TNF alpha) also increased MCP-1 secretion, although to a lesser extent (1.6-fold). Northern blot analysis showed that IL-1 alpha and IFN-gamma strongly increase the levels of mRNA that encodes for MCP-1, whereas TNF alpha appears to be a weaker stimulus. Analysis of FSC-conditioned medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting revealed three bands of MCP-1 that most likely represent isoforms of different apparent molecular weights. Pretreatment of FSC with H-7, a protein kinase C inhibitor, blocked cytokine-induced increase in both MCP-1 gene expression and secretion. To determine the potential role of MCP-1 in vivo, we also analyzed normal and pathologic human liver tissue. Northern blot analysis showed that MCP-1 mRNA expression is more abundant in liver tissue obtained from patients with chronic active hepatitis compared with normal liver tissue. These studies indicate that MCP-1 secreted by FSC is stimulated by proinflammatory cytokines and that MCP-1 gene expression is upregulated in chronic inflammatory liver disease. MCP-1 released by FSC may participate in the recruitment and activation of monocytes at sites of liver injury.
F Marra, A J Valente, M Pinzani, H E Abboud
Fc alpha receptors (Fc alpha R), detected by the binding of IgA and by anti-Fc alpha R antibodies, were found to be differentially expressed on eosinophils and neutrophils. Neutrophils were the major granulocyte population expressing Fc alpha R, and they expressed much higher levels of Fc alpha R than eosinophils. The expression of Fc alpha R by eosinophils could be upregulated approximately threefold by Ca2+ ionophore treatment in a dose- and time-dependent manner. This effect, which was blocked by a chelating agent, was not duplicated by other cellular stimuli. Eosinophils in allergic individuals displayed enhanced Fc alpha R expression, whereas neutrophils did not. The Fc alpha R on eosinophils had a higher molecular mass (70-100 kD) than those identified on neutrophils (55-75 kD). However, removal of N-linked carbohydrates from Fc alpha R of eosinophils and neutrophils revealed a major protein core of 32 kD for both cell types. The data indicate that expression of Fc alpha R molecules with a characteristic glycosylation pattern is upregulated on eosinophils in allergic individuals.
R C Monteiro, R W Hostoffer, M D Cooper, J R Bonner, G L Gartland, H Kubagawa
In an earlier report, we used differential cloning to identify genes that might be critical in controlling arterial neointima formation (Giachelli, C., N. Bae, D. Lombardi, M. Majesky, and S. Schwartz. 1991. Biochem. Biophys. Res. Commun. 177:867-873). In this study, we sequenced the complete cDNA and conclusively identified one of these genes, 2B7, as rat osteopontin. Using immunochemistry and in situ hybridization, we found that medial smooth muscle cells (SMC) in uninjured arteries contained very low levels of osteopontin protein and mRNA. Injury to either the adult rat aorta or carotid artery using a balloon catheter initiated a qualitatively similar time-dependent increase in both osteopontin protein and mRNA in arterial SMC. Expression was transient and highly localized to neointimal SMC during the proliferative and migratory phases of arterial injury, suggesting a possible role for osteopontin in these processes. In vitro, basic fibroblast growth factor (bFGF), transforming growth factor-beta (TGF-beta), and angiotensin II (AII), all proteins implicated in the rat arterial injury response, elevated osteopontin expression in confluent vascular SMC. Finally, we found that osteopontin was a novel component of the human atherosclerotic plaque found most strikingly associated with calcified deposits. These data implicate osteopontin as a potentially important mediator of arterial neointima formation as well as dystrophic calcification that often accompanies this process.
C M Giachelli, N Bae, M Almeida, D T Denhardt, C E Alpers, S M Schwartz
Mov13 mice carry a provirus that prevents transcription initiation of the alpha 1(I) collagen gene. Mutant mice homozygous for the null mutation produce no type I collagen and die at mid-gestation, whereas heterozygotes survive to adulthood. Dermal fibroblasts from heterozygous mice produce approximately 50% less type I collagen than normal littermates, and the partial deficiency in collagen production results in a phenotype similar to osteogenesis imperfecta type I (an inherited form of skeletal fragility). In this study, we have identified an adaptation of Mov13 skeletal tissue that significantly improves the bending strength of long bone. The adaptive response occurred over a 2-mo period, during which time a small number of newly proliferated osteogenic cells produced a significant amount of matrix components and thus generated new bone along periosteal surfaces. New bone deposition resulted in a measurable increase in cross-sectional geometry which, in turn, led to a dramatic increase in long bone bending strength.
J Bonadio, K J Jepsen, M K Mansoura, R Jaenisch, J L Kuhn, S A Goldstein
Hemodynamic shear stress alters the architecture and functions of vascular endothelial cells. We have previously shown that the synthesis of endothelin-1 (ET-1) in endothelial cells is increased by exposure to shear stress. Here we examined whether shear stress-induced alterations in cytoskeletal structures are responsible for increases in ET-1 synthesis in cultured porcine aortic endothelial cells. Exposure of endothelial cells to 5 dyn/cm2 of low shear stress rapidly increased monomeric G-actin contents within 5 min without changing total actin contents. The ratio of G- to total actin, 54 +/- 0.8% in quiescent endothelial cells, increased to 87 +/- 4.2% at 6 h and then decreased. Following the disruption of filamentous (F)-actin into G-actin, ET-1 mRNA levels in endothelial cells also increased within 30 min and reached a peak at 6 h. The F-actin stabilizer, phalloidin, abolished shear stress-induced increases in ET-1 mRNA; however, it failed to inhibit increases in ET-1 mRNA secondary to other stimulants. This indicates that shear stress-induced increases in ET-1 mRNA levels may be mediated by the disruption of actin fibers. Furthermore, increases in ET-1 gene expression can be induced by actin-disrupting agents, cytochalasin B and D. Another cytoskeleton-disrupting agent, colchicine, which inhibits dimerization of tubulin, did not affect the basal level of ET-1 mRNA. However, colchicine completely inhibited shear stress- and cytochalasin B-induced increases in ET-1 mRNA levels. These results suggest that shear stress-induced ET-1 gene expression in endothelial cells is mediated by the disruption of actin cytoskeleton and this induction is dependent on the integrity of microtubules.
T Morita, H Kurihara, K Maemura, M Yoshizumi, Y Yazaki
To assess the metabolic consequences of the diversion of the pancreatic venous drainage to the systemic circulation, the pancreaticoduodenal and gastrosplenic veins were anastomosed to the inferior vena cava in nine normal dogs. This procedure maintained the integrity of the entire pancreas while shunting the hormonal output of the pancreas to the periphery. The metabolic effects were assessed from the sensitivity to insulin during a euglycemic hyperinsulinemic glucose clamp using an insulin infusion of 800 microU/kg per min. The studies were controlled by their duplication in seven dogs identically treated but with the pancreatic veins reanastomosed to the portal vein. No differences in systemic insulin levels or insulin sensitivity before and after surgery were seen under these circumstances. After diversion, however, basal insulin levels rose from 4.5 +/- 1.0 to 11.5 +/- 2.5 microU/ml. Basal glucose metabolic clearance rate (MCR) rose to 3.0 +/- 0.4 from 2.0 +/- 0.3 ml/kg per min. On insulin infusion, maximal stimulation of MCR within the 2-h infusion period was to 15.2 +/- 2.5 ml/kg per min preoperatively and to 7.2 +/- 0.8 ml/kg per min after diversion. Using ratios of MCR-to-insulin concentration as an index of insulin sensitivity, it was demonstrated that this index decreased by at least 50% after diversion. These data imply that portal venous drainage of the pancreas is an important factor in the determination of peripheral insulin sensitivity.
J Radziuk, P Barron, H Najm, J Davies
C J Roberge, M Gaudry, R de Médicis, A Lussier, P E Poubelle, P H Naccache
The sympathetic nervous system is recognized to play a role in the etiology of animal and possibly human obesity through its impact on energy expenditure and/or food intake. We, therefore, measured fasting muscle sympathetic nerve activity (MSNA) in the peroneal nerve and its relationship with energy expenditure and body composition in 25 relatively lean Pima Indian males (means +/- SD; 26 +/- 6 yr, 82 +/- 19 kg, 28 +/- 10% body fat) and 19 Caucasian males (29 +/- 5 yr, 81 +/- 13 kg, 24 +/- 9% body fat). 24-h energy expenditure, sleeping metabolic rate, and resting metabolic rate were measured in a respiratory chamber, whereas body composition was estimated by hydrodensitometry. Pima Indians had lower MSNA than Caucasians (23 +/- 6 vs 33 +/- 10 bursts/min, P = 0.0007). MSNA was significantly related to percent body fat in Caucasians (r = 0.55, P = 0.01) but not in Pimas. MSNA also correlated with energy expenditure adjusted for fat-free mass, fat mass, and age in Caucasians (r = 0.51, P = 0.03; r = 0.54, P = 0.02; and r = 0.53, P = 0.02 for adjusted 24-h energy expenditure, sleeping metabolic rate, and resting metabolic rate, respectively) but not in Pima Indians. In conclusion, the activity of the sympathetic nervous system is a determinant of energy expenditure in Caucasians. Individuals with low resting MSNA may be at risk for body weight gain resulting from a lower metabolic rate. A low resting MSNA and the lack of impact of MSNA on metabolic rate might play a role in the etiology of obesity in Pima Indians.
M Spraul, E Ravussin, A M Fontvieille, R Rising, D E Larson, E A Anderson
The c-kit proto-oncogene encodes a receptor tyrosine kinase. Binding of c-kit ligand, stem cell factor (SCF) to c-kit receptor (c-kitR) is known to activate c-kitR tyrosine kinase, thereby leading to autophosphorylation of c-kitR on tyrosine and to association of c-kitR with substrates such as phosphatidylinositol 3-kinase (PI3K). In a human mast cell leukemia cell line HMC-1, c-kitR was found to be constitutively phosphorylated on tyrosine, activated, and associated with PI3K without the addition of SCF. The expression of SCF mRNA transcript in HMC-1 cells was not detectable by means of PCR after reverse transcription (RT-PCR) analysis, suggesting that the constitutive activation of c-kitR was ligand independent. Sequencing of whole coding region of c-kit cDNA revealed that c-kit genes of HMC-1 cells were composed of a normal, wild-type allele and a mutant allele with two point mutations resulting in intracellular amino acid substitutions of Gly-560 for Val and Val-816 for Asp. Amino acid sequences in the regions of the two mutations are completely conserved in all of mouse, rat, and human c-kit. In order to determine the causal role of these mutations in the constitutive activation, murine c-kit mutants encoding Gly-559 and/or Val-814, corresponding to human Gly-560 and/or Val-816, were constructed by site-directed mutagenesis and expressed in a human embryonic kidney cell line, 293T cells. In the transfected cells, both c-kitR (Gly-559, Val-814) and c-kitR (Val-814) were abundantly phosphorylated on tyrosine and activated in immune complex kinase reaction in the absence of SCF, whereas tyrosine phosphorylation and activation of c-kitR (Gly-559) or wild-type c-kitR was modest or little, respectively. These results suggest that conversion of Asp-816 to Val in human c-kitR may be an activating mutation and responsible for the constitutive activation of c-kitR in HMC-1 cells.
T Furitsu, T Tsujimura, T Tono, H Ikeda, H Kitayama, U Koshimizu, H Sugahara, J H Butterfield, L K Ashman, Y Kanayama
The stimulation of the human umbilical vein endothelial cell (HUVEC) with recombinant human monocyte-derived colony-stimulating factor (MCSF) increased the gene expression of monocyte chemotactic protein (MCP-1). Northern blot analysis indicated that 50 U/ml of MCSF is the optimal concentration for this effect. The elevation of MCP-1 mRNA started as early as 1 h after stimulation and was maintained for at least 8 h. An increased MCP-1 level in MCSF-treated HUVEC was also demonstrated at the protein level by immunocytochemical staining using a polyclonal MCP-1-specific antibody. HUVEC activated by 50 U/ml of MCSF for 5 h showed a stronger immunofluorescence staining than control cells. Micropipette separation of THP-1 monocytes from HUVEC showed that the activation of both THP-1 and endothelium by MCSF led to an increase in the separation force by more than three times (36.2 +/- 6.7 x 10(-4) vs. 9.6 +/- 3.6 x 10(-4) dyn). An increased adhesiveness was also observed after MCSF activation of peripheral blood monocytes and HUVEC (16.7 +/- 2.7 x 10(-4) vs. 5.2 +/- 0.9 x 10(-4) dyn). The increased adhesive force in both systems was blocked by the use of anti-MCP-1 (5.5 +/- 0.8 x 10(-4) and 6.8 +/- 1.1 x 10(-4) dyn). Similar results were obtained in experiments in which only HUVEC, but not monocytes, were activated by MCSF. This increased adhesion of untreated monocytes to MCSF-activated HUVEC was also blocked by the addition of anti-MCP-1. In contrast, experiments in which only THP-1 or peripheral blood monocytes, but not HUVEC, were treated with MCSF did not show a significant increase of adhesion between these cells. These results indicate that MCSF augments monocyte-endothelium interaction primarily by its action on the endothelial cell and that this function is probably mediated through an increased expression of MCP-1. The MCSF/MCP-1-dependent adhesive mechanism might be operative in the arterial wall in vivo to lead to the trapping of the infiltrated monocyte-macrophage in the subendothelial space during atherogenesis.
Y J Shyy, L L Wickham, J P Hagan, H J Hsieh, Y L Hu, S H Telian, A J Valente, K L Sung, S Chien
To ascertain whether the inability to suppress glucose production and increase glucose utilization in response to glucose infusion is an inherent characteristic of immature individuals, we determined glucose rate of appearance (R(a)) in minimally stressed, clinically stable, extremely premature infants (approximately 26-wk gestation) at two glucose infusion rates (6.2 +/- 0.4 and 9.5 +/- 0.5 mg/kg per min). We also assessed whether an increase in glucose delivery suppresses proteolysis by measuring the R(a) of phenylalanine and leucine. Glucose R(a) (and utilization) increased significantly at the higher glucose infusion rate (7.9 +/- 0.5 vs. 9.8 +/- 0.6 mg/kg per min). Glucose production persisted at the lower glucose infusion rate but was suppressed to nearly zero at the higher rate (1.7 +/- 0.5 vs. 0.3 +/- 0.1 mg/kg per min). Proteolysis was unaffected by the higher glucose infusion rate as reflected by no change in the rates of appearance of either phenylalanine (96 +/- 5 vs. 95 +/- 3 mumol/kg per h) or leucine (285 +/- 20 vs. 283 +/- 14 mumol/kg per h). Thus, clinically stable, extremely premature infants suppress glucose production and increase glucose utilization in response to increased glucose infusion, demonstrating no inherent immaturity of these processes. In contrast, increasing the rate of glucose delivery results in no change in whole body proteolysis in these infants. The regulation of proteolysis in this population remains to be defined.
D E Hertz, C A Karn, Y M Liu, E A Liechty, S C Denne
The expression of lipoprotein lipase (LPL) mRNA and the LPL activity were studied in macrophages (CD14 positive) from human atherosclerotic tissue. Macrophages were isolated after collagenase digestion by immunomagnetic isolation. About 90% of the cells were foam cells with oil red O positive lipid droplets. To analyze the mRNA expression, PCR with specific primers for LPL was used. Arterial macrophages were analyzed directly after isolation and the data showed low expression of LPL mRNA when compared with monocyte-derived macrophages. To induce the expression of LPL mRNA in macrophages, PMA was used. When incubating arterial macrophages with PMA for 24 h we could not detect any increase in LPL mRNA levels. Similarly, the cells secreted very small amounts of LPL even after PMA stimulation. In conclusion, these studies show a very low expression of LPL mRNA in the CD14-positive macrophage-derived foam cells isolated from human atherosclerotic tissue. These data suggest that the CD14-positive cells are a subpopulation of foam cells that express low levels of lipoprotein lipase, and the lipid content could be a major factor for downregulation of LPL. However, the cells were isolated from advanced atherosclerotic lesions, and these findings may not reflect the situation in early fatty streaks.
L Mattsson, H Johansson, M Ottosson, G Bondjers, O Wiklund
Apolipoprotein (apo) A-IV, a structural component of chylomicrons and high-density lipoproteins, may play a role in the catabolism of triglyceride-rich lipoproteins and in reverse cholesterol transport. To study the regulation of apoA-IV gene expression by genetic and nutritional factors, we determined the effect of a fish oil-rich and a sucrose-rich diet on apoA-IV gene transcription and nuclear and total cellular apoA-IV mRNA abundance in livers of genetically obese, hyperlipoproteinemic (fa/fa) Zucker rats and their lean (Fa/-) littermates. In obese rats fed chow, hepatic apoA-IV gene expression was more than twofold higher than in lean rats because of a post-transcriptional mechanism. apoA-I gene expression and apoC-III mRNA levels, studied as controls, were similar in both groups. The fish oil-rich diet reduced total cellular apoA-IV mRNA abundance transcriptionally to 34 +/- 4% of basal values in lean rats, but did not alter apoA-IV gene expression in obese rats. In contrast, this diet reduced apoA-I gene expression in both lean and obese animals. The sucrose-rich diet increased apoA-IV gene expression twofold in both lean and obese rats. Thus, genetic obesity alters the response of hepatic apoA-IV gene expression to a lipid-lowering diet rich in fish oil by a mechanism affecting transcriptional regulation.
W Strobl, B Knerer, R Gratzl, K Arbeiter, Y C Lin-Lee, W Patsch
Patients with McArdle's myopathy lack muscle glycogen phosphorylase (M-GP) activity. Regenerating and cultured muscle of patients with McArdle's myopathy presents a glycogen phosphorylase (GP) activity, but it is not firmly established whether M-GP or non-M-GP isoforms are expressed. We have cultured myoblasts from biopsy specimen of five patients with McArdle's myopathy. Skeletal muscle was cultured aneurally or was innervated by coculture with fetal rat spinal cord explants. In the patients' muscle biopsies and in their cultured innervated and aneural muscle we studied total GP activity, isoenzymatic pattern, reactivity with anti-M-GP antiserum, and presence of M-GP mRNA. There was no detectable enzymatic activity, no immunoreactivity with anti-M-GP antiserum, and no M-GP mRNA in the muscle biopsy of all patients. GP activity, M-GP isozyme, and anti-M-GP antiserum reactivity were present in patients' aneural cultures, increased after innervation, and were undistinguishable from control. M-GP mRNA was demonstrated in both aneural and innervated cultures of patients and control by primer extension and PCR amplification of total RNA. Our studies indicate that the M-GP gene is normally transcribed and translated in cultured muscle of patients with myophosphorylase deficiency.
A Martinuzzi, L Vergani, R Carrozzo, M Fanin, L Bartoloni, C Angelini, V Askanas, W K Engel
Prior studies have suggested that protein kinase A (PKA)-mediated inhibition of the rabbit renal brush border membrane (BBM) Na(+)-H+ exchanger involves a regulatory protein that is distinct from the transporter. This putative regulatory protein was purified by column chromatography and SDS-PAGE, and a partial primary amino acid sequence was determined. An affinity-purified polyclonal antibody to a synthetic peptide representing a sequence of the protein recognized a polypeptide of 55 kD in BBM but not in basolateral membrane. The antibody immunoprecipitated a PKA substrate of a similar molecular mass from detergent-solubilized BBM proteins. When assayed after reconstitution, PKA in the presence of ATP and Mg2+ did not inhibit Na(+)-H+ exchange transport in a fraction of solubilized BBM proteins eluting from an anion exchange column between 0.2 and 0.4 M NaCl (fraction B). Coreconstitution of fraction B with the immunoprecipitated 55-kD protein restored the inhibitory effect of PKA (change = 42%, P < 0.05). By contrast, Na(+)-H+ exchange transport in total solubilized BBM proteins was inhibited 25% (P < 0.05) by PKA, ATP, and Mg2+. This effect was abolished by immunodepletion of the cAMP regulatory protein (change = +5%, P = NS). These findings provide evidence that the regulation of renal BBM Na(+)-H+ exchange transport by PKA is affected by repletion and depletion of a specific protein. This suggests that PKA-mediated inhibition of the renal BBM Na(+)-H+ exchanger requires participation of a regulatory protein that is distinct from the transporter itself.
E J Weinman, D Steplock, S Shenolikar
Insulin stimulates tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), which in turn binds to and activates phosphatidylinositol 3-kinase (PI 3-kinase). In the present study, we have examined these processes in animal models of insulin-resistant and insulin-deficient diabetes mellitus. After in vivo insulin stimulation, there was a 60-80% decrease in IRS-1 phosphorylation in liver and muscle of the ob/ob mouse. There was no insulin stimulation of PI 3-kinase (85 kD subunit) association with IRS-1, and IRS-1-associated PI 3-kinase activity was reduced 90%. Insulin-stimulated total PI 3-kinase activity was also absent in both tissues of the ob/ob mouse. By contrast, in the streptozotocin diabetic rat, IRS-1 phosphorylation increased 50% in muscle, IRS-1-associated PI 3-kinase activity was increased two- to threefold in liver and muscle, and there was a 50% increase in the p85 associated with IRS-1 after insulin stimulation in muscle. In conclusion, (a) IRS-1-associated PI 3-kinase activity is differentially regulated in hyperinsulinemic and hypoinsulinemic diabetic states; (b) PI 3-kinase activation closely correlates with IRS-1 phosphorylation; and (c) reduced PI 3-kinase activity may play a role in the pathophysiology of insulin resistant diabetic states, such as that seen in the ob/ob mouse.
F Folli, M J Saad, J M Backer, C R Kahn
Hepatic lipocytes are perisinusoidal cells that have been thought to be analogous to tissue pericytes, a cell type with purported vasoregulatory properties. However, we and others have recently demonstrated that lipocytes acquire markers of smooth muscle cells or myofibroblasts only after liver injury, via a process termed "activation." In this study, we document lipocyte contractility on collagen lattices and examine the importance of activation in this process. In culture, lipocytes became contractile only after spreading and activating, coincident with expression of smooth muscle alpha actin, a marker of activation (1990. Virchows Arch. B Cell Pathol. 59:349). After 5 d in culture, lipocytes induced rapid and sustained contraction of collagen lattices (to 43.7 +/- 2.3% of their original size 24 h after detachment). There was no contraction of lattices containing hepatocytes. Scanning electron microscopy demonstrated intimate associations of lipocyte cell membranes and collagen fibrils. Reduction in cell volume during contraction was also prominent. Lattice contraction by lipocytes was proportional to cell number. Serum was a potent stimulator of lipocyte contraction, as were endothelin types 1, 2, and 3; the effect of serum and endothelin 1 were additive. Neither thrombin, angiotensin-II, serotonin, nor the cytokines PDGF and TGF beta induced contraction. Cytochalasin B treatment resulted in concentration-dependent inhibition of contraction. As a test of the in vivo relevance of the culture findings, lipocytes were isolated from fibrotic animals and examined immediately after adherence. Whereas lipocytes from normal liver were initially compact, smooth muscle alpha actin negative and noncontractile, cells from animals with hepatic injury due to CCl4 displayed an activated appearance, expressed smooth muscle alpha actin, and were contractile immediately after adherence. Additionally, IFN-gamma, an agent which blocks lipocyte activation (1992. Hepatology. 16:776), inhibited lipocyte contraction. The data document that normal (i.e., quiescent) lipocytes are not contractile, but that activation is associated with the development of contractility. These findings suggest that a role for lipocytes in organ contraction or vasoregulation may be confined to injured, not normal liver.
D C Rockey, C N Housset, S L Friedman
The mouse renin locus (Ren-1d) exhibits specific patterns of tissue expression. It is expressed in kidney but not submandibular gland (SMG). This locus contains a negative regulatory element (NRE) and a cAMP responsive element (CRE) that share an overlapping sequence. In the kidney, CRE binding proteins (CREB) and NRE binding proteins (NREB) compete for binding to this sequence, with the CREB having a greater affinity. In the SMG, CREB is inactivated by an inhibitory protein, permitting NREB to bind to the sequence, thus inhibiting Ren-1d expression. We hypothesize that the competition between NREB and CREB for this sequence governs tissue-specific expression of mouse renin. We speculate that this may be a general paradigm that determines tissue-specific gene expression.
M Horiuchi, R E Pratt, N Nakamura, V J Dzau
In a model of pulmonary inflammation and fibrosis induced by the antineoplastic antibiotic, bleomycin, we previously demonstrated that TGF-beta was markedly elevated within 7 d of bleomycin administration. At the time of maximal TGF-beta production, TGF-beta 1 was localized by immunohistochemistry to be present almost exclusively in alveolar macrophages. In this study, we have demonstrated that alveolar macrophages stimulated by bleomycin-induced injury secrete large quantities of biologically active TGF-beta 1 when explanted into tissue culture. However, alveolar macrophages from normal saline-treated rats secrete small quantities of biologically inactive TGF-beta. In contrast, splenic macrophages secrete large quantities of inactive TGF-beta and are unaffected by the intratracheal bleomycin treatment. High doses of the corticosteroid methylprednisolone given intramuscularly before and concomitantly with bleomycin administration prevented the influx of alveolar macrophages into the lungs, diminishing both the number of macrophages present in the alveoli and the total lung content of TGF-beta. However, the rate of secretion of TGF-beta by alveolar macrophages recovered from the alveoli was unchanged after corticosteroid treatment. When activated alveolar macrophages were cultured in the presence of several concentrations of dexamethasone that completely suppressed IL-1 secretion, little effect on TGF-beta secretion was observed. The findings in this study demonstrate that during bleomycin-induced injury, alveolar macrophages not only secrete large quantities of active TGF-beta 1, but are a predominant source of the enhanced TGF-beta response seen in this model. Furthermore, the alveolar macrophage secretion of TGF-beta is not inhibited by the presence of high concentrations of corticosteroids.
N Khalil, C Whitman, L Zuo, D Danielpour, A Greenberg
The objectives of this study were to determine if psychosocial stress impairs dilation through endothelium-derived relaxing factor (EDRF)-mediated mechanisms and if this effect is long lasting. Monkeys were fed an atherogenic diet for 36 mo while in one of three experimental conditions: (a) stable social groups ("unstressed," n = 6); (b) unstable social groups for the first half of the experiment and stable groups for the second half ("early stress," n = 8); and (c) stable groups for the first half of the experiment and unstable groups for the second half ("late stress," n = 6). Iliac arteries were studied in organ chambers containing Krebs' buffer and 10(-6) M indomethacin. Arteries from the late stress group had impaired dilation (shift of the dose-response curve down and to the right) to acetylcholine and the calcium ionophore A23187 (for both, P < 0.05), but not to nitroprusside (P > 0.05), compared with unstressed or early stress monkeys. NG-methyl-L-arginine reduced the dose-response curve to both acetylcholine and A23187 in the unstressed group and resulted in similar vascular responses among all three groups (P > 0.05). We conclude that current, but not previous, exposure to chronic stress impairs endothelium-mediated dilation of atherosclerotic iliac arteries of cynomolgus monkeys through an EDRF-mediated mechanism.
J K Williams, J R Kaplan, S B Manuck
By acting in the central nervous system, circulating insulin may regulate food intake and body weight. We have previously shown that the kinetics of insulin uptake from plasma into cerebrospinal fluid (CSF) can best be explained by passage through an intermediate compartment. To determine if transport kinetics into this compartment were consistent with an insulin receptor-mediated transport process, we subjected overnight fasted, anesthetized dogs to euglycemic intravenous insulin infusions for 90 min over a wide range of plasma insulin levels (69-5,064 microU/ml) (n = 10). Plasma and CSF samples were collected over 8 h for determination of immunoreactive insulin levels, and the kinetics of insulin uptake from plasma into CSF were analyzed using a compartmental model with three components (plasma-->intermediate compartment-->CSF). By sampling frequently during rapid changes of plasma and CSF insulin levels, we were able to precisely estimate three parameters (average standard deviation 14%) characterizing the uptake of insulin from plasma, through the intermediate compartment and into CSF (k1k2); insulin entry into CSF and insulin clearance from the intermediate compartment (k2 + k3); and insulin clearance from CSF (k4). At physiologic plasma insulin levels (80 +/- 7.4 microU/ml), k1k2 was determined to be 10.7 x 10(-6) +/- 1.3 x 10(-6) min-2. With increasing plasma levels, however, k1k2 decreased progressively, being reduced sevenfold at supraphysiologic levels (5,064 microU/ml). The apparent KM of this saturation curve was 742 microU/ml (approximately 5 nM). In contrast, the rate constants for insulin removal from the intermediate compartment and from CSF did not vary with plasma insulin (k2 + k3 = 0.011 +/- 0.0019 min-1 and k4 = 0.046 +/- 0.021 min-1). We conclude that delivery of plasma insulin into the central nervous system is saturable, and is likely facilitated by an insulin-receptor mediated transport process.
G D Baura, D M Foster, D Porte Jr, S E Kahn, R N Bergman, C Cobelli, M W Schwartz
Epidermolysis bullosa acquisita (EBA) is an acquired blistering skin disease characterized by the presence of IgG autoantibodies that recognize type VII (anchoring fibril) collagen. In this study, we have mapped the antigenic epitopes within the type VII collagen alpha chain by Western immunoblotting analysis with sera from 19 patients with EBA, using bacterial collagenase- or pepsin-resistant portions of type VII collagen and a panel of 12 recombinant fusion proteins corresponding to approximately 80% of the primary sequence of the alpha 1 (VII) collagen polypeptide. These studies identified four major immunodominant epitopes localized within the amino-terminal, noncollagenous (NC-1) domain. In addition to EBA, sera from three patients with bullous systemic lupus erythematosus (BSLE) were tested. The pattern of epitopes recognized by these sera were similar to those noted with EBA, suggesting that the same epitopes could serve as autoantigens in both blistering conditions. In contrast, sera from healthy controls or from patients with unrelated blistering skin diseases did not react with type VII collagen epitopes. Collectively, the results indicate that the immunodominant epitopes in EBA and BSLE lie within the noncollagenous regions of type VII collagen. The precise role of the circulating autoantibodies in the pathogenesis of these blistering diseases remains to be elucidated. Conceivably, however, such antibodies could disrupt the assembly of type VII collagen into anchoring fibrils and/or interfere with their interactions with other extracellular matrix molecules within the cutaneous basement membrane zone.
J C Lapiere, D T Woodley, M G Parente, T Iwasaki, K C Wynn, A M Christiano, J Uitto
The yeast Candida albicans is the leading cause of disseminated fungal infection in neonates, immunocompromised hosts, diabetics, and postoperative patients; Candida tropicalis is the second most frequent isolate. Because the integrin analogue in C. albicans shares antigenic, structural, and functional homologies with the beta 2-integrin subunits alpha M and alpha X, we investigated the role of integrin analogues in epithelial adhesion of C. albicans and C. tropicalis. On flow cytometry with the monoclonal antibody (mAb) OKM1, surface fluorescence was highest for C. albicans and significantly reduced for C. tropicalis (P < 0.001). However, adhesion to the human epithelial cell line HeLa S3 did not differ for these two candidal species: specific adhesion was highest for C. albicans at 44.0 +/- 1.8%, and only slightly lower for C. tropicalis at 38.8 +/- 3.6% (P = NS). The disparity between expression of the integrin analogue and epithelial adhesion suggested distinct mechanisms for this process in C. albicans versus C. tropicalis. Preincubation of C. albicans with anti-alpha M mAbs, with purified iC3b (the RGD ligand for the integrin analogue), or with 9-15-mer RGD peptides from iC3b all inhibited epithelial adhesion significantly (P < 0.001-0.04). Purified fibronectin or fibronectin-RGD peptides failed to block C. albicans adhesion. In contrast, epithelial adhesion of C. tropicalis was significantly inhibited by purified fibronectin and its RGD peptides (P < or = 0.021), but not by iC3b nor the iC3b-RGD peptides. Both iC3b and fibronectin were identified on the surface of epithelial cells after growth in serum-free medium. A polyclonal antibody to C3 inhibited C. albicans adhesion while a control antibody to fibronectin was ineffective; the converse was true for C. tropicalis. These results indicate that the pathogenic yeasts C. albicans and C. tropicalis recognize distinct RGD ligands present at the surface of the epithelial cell and that these interactions can be differentially inhibited by defined RGD peptides containing appropriate flanking sequences.
C M Bendel, M K Hostetter
We previously described in piglets after heterotopic cardiac transplantation the early development of a coronary arteriopathy characterized by increased immunostaining for fibronectin and interleukin-1 beta (IL-1 beta) in the vessel wall. The objective of this study was to culture smooth muscle cells from donor and host coronary arteries in these piglets to determine whether donor cells produce more fibronectin than host cells as judged by increased protein and mRNA levels, and whether IL-1 beta may be regulating this increase by an autocrine mechanism involving increased production of the cytokine. We documented increased donor coronary artery smooth muscle cell fibronectin protein synthesis and mRNA compared to host. By using neutralizing antibodies to IL-1 beta, fibronectin protein synthesis and mRNA levels were reduced in donor cells to the levels observed in the host cells and a similar reduction in synthesis was observed with the IL-1 receptor antagonist. Immunoprecipitation of newly synthesized IL-1 beta revealed increased endogenous levels in donor compared to host cells. We therefore suggest in the coronary arteriopathy a pathophysiologic mechanism whereby IL-1 beta-mediated increased fibronectin synthesis may promote lymphocyte trapping and migration of medial smooth muscle cells leading to progressive intimal thickening associated with the post-cardiac transplant coronary arteriopathy.
N Clausell, M Rabinovitch
Glycine (G) infusion causes renal vasodilation mediated by nitric oxide (NO). Cyclosporine A (CsA) nephrotoxicity is characterized by preglomerular vasoconstriction and decreased efferent arteriolar tone probably related to reduced NO and angiotensin II, respectively. L-Arginine (ARG) is a precursor to NO. To test the hypothesis that chronic CsA decreases renal NO activity, we compared the glomerular hemodynamic response to glycine infusion in rats after 8 d of CsA (30 mg/kg per d s.c.), CsA and ARG (1.6 g/kg per d p.o.) (A/CsA), and in two groups of pair-fed controls (CON, A/CON). Single nephron GFR (SNGFR), single nephron plasma flow (SNPF), glomerular capillary hydrostatic pressure gradient (delta P), proximal tubular reabsorption (APR), and kidney tissue angiotensin II (AIIk) were measured before and during G. CsA was associated with baseline decrements in SNGFR, SNPF, delta P, and AIIk, and with a blunted hemodynamic response to G. In CON, ARG did not affect baseline hemodynamics or modify the response to G. In CsA, ARG decreased baseline preglomerular resistance and restored the glomerular hemodynamic response to G. G was associated with a significant increase in AIIk in both CON and CsA. These findings suggest that (a) CsA is associated with decreased AIIk, and (b) CsA may diminish NO activity within the kidney, and that this capacity may be partially restored by arginine feeding.
L De Nicola, S C Thomson, L M Wead, M R Brown, F B Gabbai
Oxidative stress and expression of the vascular cell adhesion molecule-1 (VCAM-1) on vascular endothelial cells are early features in the pathogenesis of atherosclerosis and other inflammatory diseases. Regulation of VCAM-1 gene expression may be coupled to oxidative stress through specific reduction-oxidation (redox) sensitive transcriptional or posttranscriptional regulatory factors. In cultured human umbilical vein endothelial (HUVE) cells, the cytokine interleukin 1 beta (IL-1 beta) activated VCAM-1 gene expression through a mechanism that was repressed approximately 90% by the antioxidants pyrrolidine dithiocarbamate (PDTC) and N-acetylcysteine (NAC). Furthermore, PDTC selectively inhibited the induction of VCAM-1, but not intercellular adhesion molecule-1 (ICAM-1), mRNA and protein accumulation by the cytokine tumor necrosis factor-alpha (TNF alpha) as well as the noncytokines bacterial endotoxin lipopolysaccharide (LPS) and double-stranded RNA, poly(I:C) (PIC). PDTC also markedly attenuated TNF alpha induction of VCAM-1-mediated cellular adhesion. In a distinct pattern, PDTC partially inhibited E-selectin gene expression in response to TNF alpha but not to LPS, IL-1 beta, or PIC. TNF alpha and LPS-mediated transcriptional activation of the human VCAM-1 promoter through NF-kappa B-like DNA enhancer elements and associated NF-kappa B-like DNA binding proteins was inhibited by PDTC. These studies suggest a molecular linkage between an antioxidant sensitive transcriptional regulatory mechanism and VCAM-1 gene expression that expands on the notion of oxidative stress as an important regulatory signal in the pathogenesis of atherosclerosis.
N Marui, M K Offermann, R Swerlick, C Kunsch, C A Rosen, M Ahmad, R W Alexander, R M Medford
The basis for the unique association of Pseudomonas aeruginosa and the cystic fibrosis (CF) lung has remained obscure despite major advances in the understanding of the molecular genetic cause of this disease. There is evidence to suggest that abnormalities in CF transmembrane conductance regulator function result in alterations in the glycosylation of epithelial components. The number of asialoGM1 residues, as representative of a class of glycolipids which contain a GalNAc beta 1-4Gal sequence for P. aeruginosa attachment, was quantified by flow cytometric studies of respiratory epithelial cells in primary culture from both CF patients and normal subjects. Superficial asialoGM1 was detected on 12% of the CF cells as compared with 2.9% of the cells from normal control subjects (P = 0.03, chi 2 = 4.73), and more asialoGM1 residues were exposed on CF cells after modification by P. aeruginosa exoproducts. AsialoGM1, but not the sialylated glycolipid GM1, was demonstrated to be a receptor for 125I-labeled P. aeruginosa pilin, a major adhesin for this organism, and exogenous asialoGM1 was found to competitively inhibit P. aeruginosa adherence to epithelial cells, thus, confirming the biological role of the asialoGM1 receptor. Quantitative and qualitative differences in the sialylation of superficial glycolipids in CF epithelial cells may directly contribute to the colonization of the CF lung by P. aeruginosa.
L Saiman, A Prince
The epithelia of the medullary thick ascending limb (MAL) consists of two cell types, high (HBC) and low basolateral conductance (LBC) cell, depending on the K+ conductance of the basolateral membrane. The NH4+ conductance distinct from the K+ conductance has been suggested to exist in the proximal tubule, MAL cell, and Xenopus oocyte. The present study was designed to examine whether there is a conductive NH4+ transport system distinct from K+ conductance in two different cell types of the hamster MAL perfused in vitro. The basolateral membrane voltage (VB) was measured by impaling cells with conventional microelectrodes. Addition of NH4+ to the bath depolarized VB in a dose-dependent manner in both cell types. The response was maintained in the absence of HCO3-. When the VB deflection elicited upon 50 mM KCl or NH4Cl in the bath (delta VBK+ or delta VBNH4+) were compared, delta VBNH4+ was almost the same as delta VBK+ in the HBC cell, whereas the former was greater than the latter in the LBC. In the HBC cell, 10 mM Ba2+ in the bath equally suppressed both delta VBK+ and delta VBNH4+, whereas in the LBC cell it suppressed delta VBK+ with a small effect on delta VBNH4+, indicating that NH4+ is transported via a pathway distinct from Ba(2+)-sensitive K+ conductance. The VB deflection by NH4+ was unaffected by addition of 0.1 mM ouabain or 10 microM 5-nitro-2-(3-phenylpropylamino)-benzoate (a Cl- channel blocker) to the bath, excluding the contribution of the Na+, K+ pump or Cl- channel. An abrupt reduction of Na+ in the bath from 200 to 20 mM did not cause any changes in VB, suggesting that a nonselective cation channel may not account for the NH4+ transport. Amiloride at 10 microM inhibited delta VBNH4+ with a higher efficacy in the LBC cell. We conclude that a rheogenic NH4+ transport system independent from the K+ conductance exists in the basolateral membrane of the LBC cell of the hamster MAL, and may play some roles in the regulation of NH4+ transport.
S Tsuruoka, M Takeda, K Yoshitomi, M Imai
Na,K-ATPase (Na,K-pump) plays an important role in the regulation of intracellular ion composition. The purpose of this study is to determine whether Na+ regulates the levels of mRNA coding for Na,K-ATPase alpha and beta subunits in cultured neonatal rat cardiocytes. We measured intracellular Na+ levels ([Na+]i) in cardiocytes using a Na(+)-sensitive fluorescence dye (SBFI). 1 mM ouabain caused a significant increase in [Na+]i in cardiocytes; from 12.8 +/- 0.3 to 28.8 +/- 1.8 mM. Exposure of cardiocytes to 1 mM ouabain resulted in a three- to fourfold increase in alpha 1, alpha 2, and alpha 3 mRNA accumulation, and an approximate two-fold increase in beta 1 mRNA accumulation. A maximum elevation was reached at 60 min in both cases. The ouabain-induced alpha 1 mRNA accumulation was still observed in the Ca(2+)-free culture medium. Exposure of cardiocytes to 10 microM monensin in the absence of extracellular Ca2+ also resulted in a threefold increase in alpha 1 mRNA accumulation. The increased alpha 1 mRNA expression by 1 mM ouabain was associated with a fourfold increase in alpha 1 subunit protein accumulation. Transfection experiments with chimeric plasmids containing 5'-flanking sequences of alpha 1, alpha 2, and alpha 3 isoform genes and a luciferase reporter gene revealed that 1 mM ouabain caused a twofold increase in luciferase activity in each alpha system. These results suggest that Na+ directly regulates Na,K-ATPase gene expression in cardiocytes. The transfection study further supports the premise that Na(+)-responsive elements are located within the 5'-flanking sequences of each alpha isoform gene.
K Yamamoto, U Ikeda, Y Seino, Y Tsuruya, A Oguchi, K Okada, S Ishikawa, T Saito, K Kawakami, Y Hara
Corticotropin-releasing hormone (CRH) plays major roles in coordination of the stress response and regulation of the immune/inflammatory reaction, two important functions associated with sexual dimorphism. Two overlapping segments of the 5' flanking region of the human (h) CRH gene, the proximal 0.9 kb (containing two perfect half-palindromic estrogen-responsive elements [EREs]) and the 2.4 kb (including the former and containing two additional perfect half-palindromic EREs), were examined for their ability to confer estrogen-mediated transcriptional enhancement to a homologous or heterologous promoter. The level of estrogen-induced transactivation by the 0.9- and 2.4-kb segments was determined by chloramphenicol acetyltransferase analysis in CV-1 cells cotransfected with estrogen receptor (ER) cDNA expression plasmids, and found to be respectively approximately 10% and 20% of that of the strongly estrogen-responsive Xenopus vitellogenin A2 enhancer. Gel retardation and immunoprecipitation demonstrated specific association between the perfect half-palindromic EREs of hCRH gene and the DNA binding domain of hER in vitro. These findings may constitute the basis of sexual dimorphism in the expression of the CRH gene in the central nervous system and periphery, and might shed light in existing gender differences in stress response and immune regulation.
N C Vamvakopoulos, G P Chrousos
To compare the metabolic effects of elevated plasma concentrations of IGF-I and insulin, overnight-fasted normal subjects were studied twice, once receiving IGF-I and once insulin at doses that resulted in identical increases in glucose uptake during 8-h euglycemic clamping. Recombinant human IGF-I or insulin were infused in one group at high doses (30 micrograms/kg per h IGF-I or 0.23 nmol/kg per h insulin) and in another group at low doses (5 micrograms/kg per h IGF-I or 0.04 nmol/kg per h insulin). Glucose rate of disappearance (measured by [6,6-D2]-glucose infusions) increased from baseline by 239 +/- 16% during high dose IGF-I vs 197 +/- 18% during insulin (P = 0.021 vs IGF-I). Hepatic glucose production decreased by 37 +/- 6% during high dose IGF-I vs 89 +/- 13% during insulin (P = 0.0028 vs IGF-I). IGF-I suppressed whole body leucine flux ([1-13C]-leucine infusion technique) more than insulin (42 +/- 4 vs 32 +/- 3% during high doses, P = 0.0082). Leucine oxidation rate decreased during high dose IGF-I more than during insulin (55 +/- 4 vs 32 +/- 6%, P = 0.0001). The decreases of plasma concentrations of free fatty acids, acetoacetate, and beta-hydroxybutyrate after 8 h of IGF-I and insulin administration were similar. Plasma C-peptide levels decreased by 57 +/- 4% during high doses of IGF-I vs 36 +/- 6% during insulin (P = 0.005 vs IGF-I). The present data demonstrate that, compared to insulin, an acute increase in plasma IGF-I levels results in preferential enhancement of peripheral glucose utilization, diminished suppression of hepatic glucose production, augmented decrease of whole body protein breakdown (leucine flux), and of irreversible leucine catabolism but in similar antilipolytic effects. The data suggest that insulin-like effects of IGF-I in humans are mediated in part via IGF-I receptors and in part via insulin receptors.
R Laager, R Ninnis, U Keller
To extend previous observations on the role of polyamines in insulin production, metabolism, and replication of insulin-secreting pancreatic beta cells, we have studied the role of polyamines in the regulation of the stimulus-secretion coupling of clonal rat insulinoma cells (RINm5F). For this purpose, RINm5F cells were partially depleted in their polyamine contents by use of the specific ornithine decarboxylase inhibitor difluoromethylornithine (DFMO), which led to an increase in cellular insulin and ATP contents. Analysis of different parts of the signal transduction pathway revealed that insulin secretion and the increase in cytoplasmic free Ca2+ concentration ([Ca2+]i) after K(+)-induced depolarization were markedly enhanced in DFMO-treated cells. These effects were paralleled by increased voltage-activated Ca2+ currents, as judged by whole-cell patch-clamp analysis, probably reflecting increased channel activity rather than elevated number of channels per cell. DFMO treatment also rendered phospholipase C in these cells more sensitive to the muscarinic receptor agonist carbamylcholine, as evidenced by enhanced generation of inositol phosphates, increase in [Ca2+]i and insulin secretion, despite an unaltered ligand binding to muscarinic receptors and lack of effect on protein kinase C activity. In addition, the tumor promoter 12-O-tetradecanoylphorbol 13-acetate, at concentrations suggested to be specific for protein kinase C activation, evoked an increased insulin output in polyamine-deprived cells compared to control cells. The stimulatory effects of glucose or the cyclic AMP raising agent theophylline on insulin release were not increased by DFMO treatment. In spite of increased binding of sulfonylurea in DFMO-treated cells, there was no secretory response or altered increase in [Ca2+]i in response to the drug in these cells. It is concluded that partial polyamine depletion sensitizes the stimulus-secretion coupling at multiple levels in the insulinoma cells, including increased voltage-dependent Ca2+ influx and enhanced responsiveness to activators of phospholipase C and protein kinase C. In their entirety, our present results indicate that the behavior of the stimulus-secretion coupling of polyamine-depleted RINm5F insulinoma cells changes towards that of native beta cells, thus improving the usefulness of this cell line for studies of beta cell insulin secretion.
A Sjöholm, P Arkhammar, N Welsh, K Bokvist, P Rorsman, A Hallberg, T Nilsson, M Welsh, P O Berggren
The antitumor properties of recombinant human IL-7 (rhIL-7) on a human tumor was evaluated by engrafting a human colon carcinoma into immunodeficient mice and then treating the mice with rhIL-7 and adoptively transferred human peripheral blood T cells. It was found that rhIL-7 alone had no effect on the survival of the tumor-bearing recipients. However, the combination of rhIL-7 and human T cells significantly promoted the survival of the recipients compared with mice receiving either treatment by itself. When the surviving mice were analyzed 6 mo later for the degree of human cell engraftment, the recipients receiving both rhIL-7 and human T cells had greater numbers of human CD8+ T cells in the spleens. However, the human T cells recovered from the surviving mice showed low lytic activity against the tumor in vitro. Supernatants from human T cells cultured with the tumor and rhIL-7 in vitro were found to inhibit tumor growth and were demonstrated to contain high levels of IFN-gamma. Antibodies to IFN-gamma neutralized the growth inhibition of the tumor both in vitro and in vivo demonstrating that the in vivo mechanism underlying the antitumor effects of this regimen was partly dependent on the production of IFN-gamma by the T cells and not their cytolytic capability. Interestingly, systemic administration of rhIFN-gamma to tumor-bearing mice yielded little antitumor effect suggesting that adoptive immunotherapy with rhIL-7 was superior possibly because of the continuous local release of the cytokines. Therefore, rhIL-7 may be of clinical use as an antineoplastic agent and the human/mouse model is a potentially important preclinical model for in vivo evaluation of the efficacy of this and other immunotherapies.
W J Murphy, T C Back, K C Conlon, K L Komschlies, J R Ortaldo, T J Sayers, R H Wiltrout, D L Longo
We used specific antisera and immunohistochemical methods to investigate the subcellular localization and expression of Bcr, Abl, and Bcr-Abl proteins in leukemic cell lines and in fresh human leukemic and normal samples at various stages of myeloid differentiation. Earlier studies of the subcellular localization of transfected murine type IV c-Abl protein in fibroblasts have shown that this molecule resides largely in the nucleus, whereas transforming deletion variants are localized exclusively in the cytoplasm. Here, we demonstrate that the murine type IV c-Abl protein is also found in the nucleus when overexpressed in a mouse hematopoietic cell line. However, in both normal and leukemic human hematopoietic cells, c-Abl is discerned predominantly in the cytoplasm, with nuclear staining present, albeit at a lower level. In contrast, normal endogenous Bcr protein, as well as the aberrant p210BCR-ABL and p190BCR-ABL proteins consistently localize to the cytoplasm in both cell lines and fresh cells. The results with p210BCR-ABL were confirmed in a unique Ph1-positive chronic myelogenous leukemia (CML) cell line, KBM5, which lacks the normal chromosome 9 and hence the normal c-Abl product. Because the p210BCR-ABL protein appears cytoplasmic in both chronic phase and blast crisis CML cells, as does the p190BCR-ABL in Ph1-positive acute leukemia, a change in subcellular location of Bcr-Abl proteins between cytoplasm and nucleus cannot explain the different spectrum of leukemias associated with p210 and p190, nor the transition from the chronic to the acute leukemia phenotype seen in CML. Further analysis of fresh CML and normal hematopoietic bone marrow cells reveals that p210BCR-ABL, as well as the normal Bcr and Abl proteins, are expressed primarily in the early stages of myeloid maturation, and that levels of expression are reduced significantly as the cells mature to polymorphonuclear leukocytes. Similarly, a decrease in Bcr and Abl levels occurs in HL-60 cells induced by DMSO to undergo granulocytic differentiation. The action of p210BCR-ABL and its normal counterparts may, therefore, take place during the earlier stages of myeloid development.
M Wetzler, M Talpaz, R A Van Etten, C Hirsh-Ginsberg, M Beran, R Kurzrock
The hallmark of ischemic acute renal failure is a rapid and early decline in proximal tubule ATP. Since we have previously shown that over half of apical microfilament losses occur within the first 5 min of experimental ischemic injury, we postulated that microfilament (F-actin) structure and cellular location are dependent on cellular ATP levels. To test this hypothesis, we used maleic acid to selectively inhibit renal cortical ATP production in vivo. Maleic acid significantly decreased tissue ATP and apical F-actin in a dose-dependent manner relative to equimolar sodium chloride controls, yet higher doses of maleic acid quantitatively resulted in net actin polymerization, primarily in the cytoplasm. Functionally, maleic acid decreased glomerular filtration rate (GFR) and tubular reabsorption of sodium (TRNa) in a dose-dependent manner relative to sodium chloride controls. Administration of exogenous ATP resulted in significant increases in tissue ATP, net actin depolymerization, and relocation of F-actin from the cytoplasm back to the apical surface coinciding with increases in GFR and TRNa. Thus, ATP depletion induced by maleic acid resulted in significant cytoskeletal and functional alterations that were ameliorated by exogenous ATP. We therefore conclude that the structure and cellular location of F-actin necessary for normal functioning of proximal tubule cells in vivo is dependent on tissue ATP levels.
P S Kellerman
Spontaneous and dexamethasone-induced noninsulin-dependent diabetes mellitus (NIDDM) in rats is associated with loss of glucose-stimulated insulin secretion (GSIS) and a reduction in both GLUT-2-positive beta cells and high Km glucose transport. To determine if the chronology and correlation of these abnormalities is consistent with a causal relationship, Zucker (fa/fa) rats were studied longitudinally before and during 10 d of dexamethasone-induced (0.4 mg/kg per d i.p.) NIDDM. Within 24 h of dexamethasone treatment blood glucose rose and GSIS declined, becoming paradoxically negative (-87 +/- 12 microU/ml per min) on day 10. Blood glucose was negatively correlated with GSIS (r = -0.92; P < 0.001). 3-0-methyl-D-glucose (3MG) transport was unchanged at 12 h, 23% below normal on day 1, and declined further to a nadir 59% below normal. The GLUT-2-positive beta cell area did not decline until 48 h, reaching a nadir of 35% of normal at 10 d. The area of GLUT-2-positive beta cells was correlated with GSIS (r = 0.77; P < 0.005). We conclude that the chronology and correlation between GSIS loss and hyperglycemia is consistent with a cause-effect relationship, but that the subtotal impairment in glucose transport by itself cannot explain the total loss of GSIS if one assumes that normal beta cells are functionally homogenous.
M Ohneda, J H Johnson, L R Inman, R H Unger
The present study was performed to clarify the relationship between human T cell lymphotropic virus type I (HTLV-I) infection and chronic inflammatory arthropathy. To determine the ability of HTLV-I to infect synovial cells and the effect on synovial cell proliferation, synovial cells were cocultured with the HTLV-I-producing T cell lines (MT-2 or HCT-1). After coculture with HTLV-I-infected T cells, the synovial cells expressed HTLV-I-specific core antigens, and HTLV-I proviral DNA was detected from the synovial cells by polymerase chain reaction. These cocultured synovial cells with HTLV-I-infected T cells proliferated more actively than the synovial cells cocultured with uninfected T cells. This stimulatory effect of HTLV-I-infected T cells on synovial cell proliferation seems necessary to contact each other. After being cocultured with MT-2 cells, synovial cells proliferated more actively than control cells even after several passages. Furthermore, HTLV-I-infected synovial cells produced significant amounts of granulocyte/macrophage colony-stimulating factor. These results suggest that HTLV-I can infect synovial cells, resulting their active proliferation and may be involved in the pathogenesis of proliferative synovitis similar to that found in rheumatoid arthritis.
M Sakai, K Eguchi, K Terada, M Nakashima, I Yamashita, H Ida, Y Kawabe, T Aoyagi, H Takino, T Nakamura
The transmembrane isoform of Fc gamma RIII, Fc gamma RIIIA, is found on NK cells, cultured monocytes, and tissue macrophages in association with a dimer of an accessory subunit, either gamma or zeta. Functions of individual Fc receptors have been difficult to analyze due to coexpression of the receptors on hematopoietic cells and permanent cell lines expressing Fc receptors. cDNAs for the alpha and gamma subunits of Fc gamma RIIIA were cotransfected into COS-1 cells, which lack endogenous Fc receptors, to evaluate receptor-mediated phagocytosis and changes in [Ca2+]i. Transfectants both bound and phagocytosed IgG-sensitized erythrocytes and, following activation of Fc gamma RIIIA, increased [Ca2+]i. The gamma subunit was essential both for the surface expression of the receptor and for transduction of the phagocytic signal. Truncation of the gamma subunit cytoplasmic domain (amino acids 65-80) eliminated phagocytic function. Phorbol ester inhibited phagocytosis in a concentration-dependent manner, but did not affect IgG-sensitized erythrocytes binding, suggesting that a protein kinase C-dependent pathway inhibits phagocytosis. The data indicate that a tyrosine containing cytoplasmic domain within the gamma subunit is required for phagocytosis by Fc gamma RIIIA.
J G Park, R E Isaacs, P Chien, A D Schreiber
An important mechanism for the antiinflammatory effect of pharmacological doses of glucocorticoids is the inhibition of arachidonic acid release from phospholipids by phospholipase A2 (PLA2). As a corollary, one might predict that low endogenous concentrations of glucocorticoids favor inflammatory disease states. Indeed, clinical and experimental observations revealed an association between glucocorticoid deficiency and disease states caused by immunological and/or inflammatory mechanisms. The purpose of the present investigation was to study the regulation of PLA2 mRNA, protein, and enzyme activity in adrenalectomized (ADX) rats where glucocorticoid concentrations were below physiological levels. The mRNA of group I and II PLA2 were measured by PCR. Group II PLA2 mRNA was increased by 126 +/- 9% in lung tissue of ADX rats, whereas group I PLA2 was increased only by 27 +/- 1.5%. The increase in group II mRNA in ADX rats was reflected by a corresponding increase of group II PLA2 protein (70-100%) in lung, spleen, liver, and kidney. This increase was reversed by the administration of exogenous corticosterone. After ADX, the percentage increase in total PLA2 activity was higher than that of mRNA or PLA2 protein, suggesting that the activity of the enzyme was modulated by inhibitors or activators. The concentration of lipocortin-I, an inhibitor of PLA2 enzyme was strongly correlated with the activity of PLA2 in the tissues (lung, spleen, liver, and kidney). In all these tissues, the concentrations of lipocortin-I declined after ADX. Thus upregulation of PLA2 enzyme and downregulation of lipocortin-I might account for the enhanced inflammatory response in hypoglucocorticoid states.
B S Vishwanath, F J Frey, M J Bradbury, M F Dallman, B M Frey
Despite evidence that insulin per se may be an important regulator of glomerular hemodynamics, little is known about its direct action on the glomerular afferent arterioles (Af-Art) and efferent arterioles (Ef-Art), the crucial vascular segments that control glomerular hemodynamics. In the present study, we examined the direct effect of physiological concentrations of insulin on isolated microperfused rabbit Af- and Ef-Arts. After cannulation, vessels were equilibrated in insulin-free medium for 30 min. To determine whether insulin causes vasodilation or constriction, increasing doses (5, 20, and 200 microU/ml) were added to the bath and lumen of arterioles that were either preconstricted to 50% of control diameter with norepinephrine or left nonpreconstricted. Insulin caused no vasoconstriction in either Af- or Ef-Arts, but it reversed norepinephrine-induced constriction in Ef-Arts but not Af-Arts (suggesting a vasodilator action selective to the Ef-Art): at 200 microU/ml, insulin increased Ef-Art luminal diameter by 75.8 +/- 7.0% from the preconstricted level (n = 6; P < 0.008). The vasorelaxant effect of insulin on Ef-Arts was not affected by blockade of either endothelium-derived relaxing factor/nitric oxide or prostaglandin synthesis. Despite the lack of effect of insulin on Af-Art when added after the equilibration period, when Af-Arts were equilibrated in the presence of either 20 or 200 microU/ml insulin, their basal diameter was significantly reduced (11.7 +/- 0.9 microns; P < 0.025, n = 6, and 12.0 +/- 0.9 microns; P < 0.025, n = 7, respectively) compared with nontreated Af-Arts (16.2 +/- 1.3 microns; n = 7). In conclusion, this study demonstrates that at physiological concentrations, insulin dilates NE-constricted Ef-Arts, while insulin pretreatment enhances Af-Art tone. The disparate actions of insulin on the Af- vs the Ef-Art may contribute to its beneficial effect on glomerular hypertension.
L A Juncos, S Ito
Mutations in the human beta thyroid hormone receptor (h-TR beta) gene are associated with the syndrome of generalized resistance to thyroid hormone. We investigated the interaction of three h-TR beta 1 mutants representing different types of functional impairment (kindreds ED, OK, and PV) with different response elements for 3,3',5-triiodothyronine (T3) and with retinoid X receptor beta (RXR beta). The mutant receptors showed an increased tendency to form homodimers on a palindromic T3-response element (TREpal), a direct repeat (DR + 4), and an inverted palindrome (TRElap). On TRElap, wild type TR binding was decreased by T3, while the mutant receptors showed a variably decreased degree of dissociation from TRElap in response to T3. The extent of dissociation was proportional to their T3 binding affinities. RXR beta induced the formation of h-TR beta 1:RXR beta heterodimers equally well for mutants and the wild type h-TR beta 1 on these T3 response elements. However, the T3-dependent increase in heterodimerization with RXR beta was absent or reduced for the mutant TRs. Transient transfection studies indicated that the dominant negative potency was several-fold more pronounced on the TRElap as compared to TREpal or DR + 4. In CV-1 and HeLa cells, transfection of RXR beta could not reverse the dominant negative action. These results demonstrate that the binding of mutant h-TRs to DNA, as well as their dominant negative potency, are TRE dependent. In addition, competition for DNA binding, rather than for limiting amounts of RXR beta, is likely to mediate the dominant negative action.
C A Meier, C Parkison, A Chen, K Ashizawa, S C Meier-Heusler, P Muchmore, S Y Cheng, B D Weintraub
Osteogenesis imperfecta (OI) type I is the mildest form of heritable bone fragility resulting from mutations within the COL1A1 gene. We studied fibroblasts established from a child with OI type I and demonstrated underproduction of alpha 1 (I) collagen chains and alpha 1 (I) mRNA. Indirect RNase protection suggested two species of alpha 1 (I) mRNA, one of which was not collinear with fully spliced alpha 1 (I) mRNA. The noncollinear population was confined to the nuclear compartment of the cell, and contained the entire sequence of intron 26 and a G-->A transition in the first position of the intron donor site. The G-->A transition was also identified in the genomic DNA. The retained intron contained an in-frame stop codon and introduced an out-of-frame insertion within the collagen mRNA producing stop codons downstream of the insertion. These changes probably account for the failure of the mutant RNA to appear in the cytoplasm. Unlike other splice site mutations within collagen mRNA that resulted in exon skipping and a truncated but inframe RNA transcript, this mutation did not result in production of a defective collagen pro alpha 1 (I) chain. Instead, the mild nature of the disease in this case reflects failure to process the defective mRNA and thus the absence of a protein product from the mutant allele.
M L Stover, D Primorac, S C Liu, M B McKinstry, D W Rowe
The effects on thrombosis and hemostasis of thrombin-induced activation of endogenous protein C (PC) were evaluated in baboons. Thrombosis was induced by placing into arteriovenous shunts a segment of Dacron vascular graft, which generated arterial platelet-rich thrombus, followed by an expansion region of low-shear blood flow, which in turn accumulated fibrin-rich venous-type thrombus. Thrombosis was quantified by 111In-platelet imaging and 125I-fibrinogen accumulation. Intravenous infusion of alpha-thrombin, 1-2 U/kg-min for 1 h, increased baseline activated PC levels (approximately 5 ng/ml) to 250-500 ng/ml (P < 0.01). The lower thrombin dose, which did not deplete circulating platelets, fibrinogen, or PC, reduced arterial graft platelet deposition by 48% (P < 0.05), and platelet and fibrin incorporation into venous-type thrombus by > 85% (P < 0.01). Thrombin infusion prolonged the activated partial thromboplastin clotting time, elevated fibrinopeptide A (FPA), thrombin-antithrombin III complex (T:AT III), and fibrin D-dimer plasma levels (P < 0.01), but did not affect bleeding times. Thrombin's antithrombotic effects were blocked by infusing a monoclonal antibody (HPC-4) which prevented PC activation in vivo, caused shunt occlusion, increased the consumption of platelets and fibrinogen, elevated plasma FPA and T:AT III levels, and reduced factor VIII (but not factor V) procoagulant activity (P < 0.05). We conclude that activated PC is a physiologic inhibitor of thrombosis, and that activation of endogenous PC may represent a novel and effective antithrombotic strategy.
S R Hanson, J H Griffin, L A Harker, A B Kelly, C T Esmon, A Gruber
Fluid shear stress has been shown to be an important regulator of vascular structure and function through its effect on the endothelial cell. We have explored the effect of shear stress on the expression of the heparin-binding growth factors platelet-derived growth factor B chain (PDGF-B) and basic fibroblast growth factor (bFGF) in bovine aortic endothelial cells using a purpose-built cone-plate viscometer. Using morphometric analysis, we have mimicked the endothelial cell shape changes encountered in vivo in response to shear stress and correlated these with changes in gene expression. Steady laminar shear stress of 15 and 36 dyn/cm2 both resulted in endothelial cell shape change, but the higher shear stress induced greater and more uniform alignment in the direction of flow and nuclear protrusion after 24 h. Steady laminar shear stress of both 15 and 36 dyn/cm2 induced a significant 3.9- and 4.2-fold decrease, respectively, in PDGF-B mRNA at 9 h. In contrast, steady laminar shear of 15 dyn/cm2 induced a mild and transient 1.5-fold increase in bFGF mRNA while shear of 36 dyn/cm2 induced a significant 4.8-fold increase at 6 h of shear which remained at 2.9-fold at 9 h. Pulsatile and turbulent shear stress showed the same effect as steady laminar shear stress (all at 15 dyn/cm2 time-average magnitude) on PDGF-B and bFGF mRNA content. Cyclic stretch (20% strain, 20/min) of cells grown on silicone substrate did not significantly affect either PDGF-B or bFGF mRNA levels. These results suggest that expression of each peptide growth factor gene is differentially regulated by fluid shear stress in the vascular endothelial cell. These results may have implications on vascular structure and function in response to hemodynamic forces and present a model for the study of transduction of mechanical stimuli into altered gene expression.
A M Malek, G H Gibbons, V J Dzau, S Izumo
alpha 1-Antitrypsin (alpha 1-AT) is an acute phase plasma protein predominantly derived from the liver which inhibits neutrophil elastase. Previous studies have suggested that alpha 1-AT is also expressed in human enterocytes because alpha 1-AT mRNA could be detected in human jejunum by RNA blot analysis, and alpha 1-AT synthesis could be detected in a human intestinal adenocarcinoma cell line Caco2, which spontaneously differentiates into villous-like enterocytes in tissue culture. To definitively determine that the alpha 1-AT gene is expressed in human enterocytes in vivo, we examined tissue slices of human jejunum and ileum by in situ hybridization. The results demonstrate specific hybridization to enterocytes from the bases to the tips of the villi. Although there was no hybridization to enterocytes in most of the crypt epithelium, there was intense specific hybridization in one region of the crypt. Double-label immunohistochemical studies showed that alpha 1-AT and lysozyme co-localized to this region, indicating that it represented Paneth cells. Finally, there was a marked increase in hybridization to alpha 1-AT mRNA in villous enterocytes and Paneth cells in Crohn's disease. The results of this study provide definitive evidence that alpha 1-AT is expressed in human jejunal and ileal enterocytes in vivo, and show that alpha 1-AT is also a product of Paneth cells. Together with the results of other studies, these data raise the possibility that alpha 1-AT detected in fecal alpha 1-AT clearance assays for diagnosing protein-losing enteropathies is predominantly derived from sloughed enterocytes.
E P Molmenti, D H Perlmutter, D C Rubin
B L Smith, R Baumgarten, S Nielsen, D Raben, M L Zeidel, P Agre
Neutrophil adherence and/or aggregation has been implicated in ischemia reperfusion injuries. We examined the role of P-selectin in PMN-mediated injury after reperfusion of the rabbit ear. The ear was partially amputated, and then reattached leaving the central artery and vein intact. To induce ischemia the central artery was then occluded. Treatment was at reperfusion with either saline or one of two murine P-selectin mAbs, designated PB1.3 and PNB1.6 mAb PB1.3 cross-reacts with rabbit P-selectin and prevents histamine-induced leukocyte rolling, whereas PNB1.6 does not. Using a peroxidase-antiperoxidase system P-selectin was detected in the ischemic ear, but not in the nonischemic ear. Ear volume increased to 5.3 times baseline in the saline-treated animals (n = 8), 6.6 times baseline in the nonblocking mAb PNB1.6-treated animals (n = 2), and 3.7 times baseline in the blocking mAb PB1.3-treated animals (n = 8). Estimated tissue necrosis of the combined saline- and PNB1.6-treated animals was 46 vs. 2.7% for the mAb PB1.3-treated animals. We conclude that: (a) P-selectin is expressed in ischemia reperfusion; (b) P-selectin participates in PMN-endothelial cell interactions in ischemia reperfusion; and (c) inhibiting P-selectin adhesion significantly reduces reperfusion injury.
R K Winn, D Liggitt, N B Vedder, J C Paulson, J M Harlan
C M Wei, C H Kim, V M Miller, J C Burnett Jr
Exposure of rabbit peritoneal exudate macrophages (PEM) or whole blood to picomolar concentrations of LPS induces adaptation or hyporesponsiveness to LPS. Because of the importance of plasma LPS-binding protein (LBP) and the macrophage cell membrane protein CD14 in recognition of LPS, we examined the effect of LBP on LPS-induced adaptation in PEM. PEM exposed to LPS in the presence of LBP for 8 h were markedly less responsive to subsequent stimulation by LPS than monocytes/macrophages (M phi) adapted in the absence of LBP. LPS-induced expression of TNF was sharply reduced in LBP-LPS-adapted PEM, but in contrast these cells remained fully responsive to Staphylococcus aureus peptidoglycan. We considered that specific hyporesponsiveness in LPS-adapted M phi or in blood monocytes could be due to decreased expression of CD14 or diminished binding of LBP-LPS complexes to CD14. However, flow cytometry analysis revealed only minimal reduction of CD14 expression or CD14-dependent binding of a fluorescent LPS derivative when normo- and hyporesponsive cells were compared. These results show that complexes of LPS and LBP are more effective than LPS alone in inducing adaptation to LPS, and LPS-induced hyporesponsiveness probably results from changes in cellular elements distinct from CD14 that are involved in either LPS recognition or LPS-specific signal transduction.
J Mathison, E Wolfson, S Steinemann, P Tobias, R Ulevitch
Plasma HDL are a negative risk factor for atherosclerosis. Cholesteryl ester transfer protein (CETP; 476 amino acids) transfers cholesteryl ester from HDL to other lipoproteins. Subjects with homozygous CETP deficiency caused by a gene splicing defect have markedly elevated HDL; however, heterozygotes have only mild increases in HDL. We describe two probands with a CETP missense mutation (442 D:G). Although heterozygous, they have threefold increases in HDL concentration and markedly decreased plasma CETP mass and activity, suggesting that the mutation has dominant effects on CETP and HDL in vivo. Cellular expression of mutant cDNA results in secretion of only 30% of wild type CETP activity. Moreover, coexpression of wild type and mutant cDNAs leads to inhibition of wild type secretion and activity. The dominant effects of the CETP missense mutation during cellular expression probably explains why the probands have markedly increased HDL in the heterozygous state, and suggests that the active molecular species of CETP may be multimeric.
K Takahashi, X C Jiang, N Sakai, S Yamashita, K Hirano, H Bujo, H Yamazaki, J Kusunoki, T Miura, P Kussie
Insulin rapidly stimulates tyrosine kinase activity of its receptor resulting in phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1), which in turn associates with phosphatidylinositol 3-kinase (PI 3-kinase), thus activating the enzyme. Glucocorticoid treatment is known to produce insulin resistance, but the exact molecular mechanism is unknown. In the present study we have examined the levels and phosphorylation state of the insulin receptor and IRS-1, as well as the association/activation between IRS-1 and PI 3-kinase in the liver and muscle of rats treated with dexamethasone. After dexamethasone treatment (1 mg/kg per d for 5 d), there was no change in insulin receptor concentration in liver of rats as determined by immunoblotting with antibody to the COOH-terminus of the receptor. However, insulin stimulation of receptor autophosphorylation determined by immunoblotting with antiphosphotyrosine antibody was reduced by 46.7 +/- 9.1%. IRS-1 and PI 3-kinase protein levels increased in liver of dexamethasone-treated animals by 73 and 25%, respectively (P < 0.05). By contrast, IRS-1 phosphorylation was decreased by 31.3 +/- 10.9% (P < 0.05), and insulin stimulated PI 3-kinase activity in anti-IRS-1 immunoprecipitates was decreased by 79.5 +/- 11.2% (P < 0.02). In muscle, the changes were less dramatic, and often in opposite direction of those observed in liver. Thus, there was no significant change in insulin receptor level or phosphorylation after dexamethasone treatment. IRS-1 and PI 3-kinase levels were decreased to 38.6 and 65.6%, respectively (P < 0.01 and P < 0.05). IRS-1 phosphorylation showed no significant change in muscle, but insulin-stimulated IRS-1 associated PI 3-kinase was decreased by 41%. Thus, dexamethasone has differential effects on the proteins involved in the early steps in insulin action in liver and muscle. In both tissues, dexamethasone treatment results in a reduction in insulin-stimulated IRS-1-associated P I3-kinase, which may play a role in the pathogenesis of insulin resistance at the cellular level in these animals.
M J Saad, F Folli, J A Kahn, C R Kahn
Fc receptors for immunoglobulins are found on many cells and are important in host defense. We transfected Fc gamma RIIIA, present on macrophages and natural killer (NK) cells, into COS-1 cells to study its role in phagocytosis and calcium mobilization in the absence of other Fc gamma receptors. Human Fc gamma RIIIA-alpha (CD16) was cotransfected with its associated chains, either Fc gamma RIIIA gamma or zeta. Both gamma and zeta were observed to induce a phagocytic signal, but gamma was at least sixfold more effective than zeta. Conservative substitution by phenylalanine of either one of the two cytoplasmic tyrosine residues in the gamma chain resulted in markedly diminished phagocytosis and calcium mobilization. Tyrphostin 23, an inhibitor of tyrosine kinases, reversibly inhibited phagocytosis. Further, in vitro kinase assays with the wild type and mutant gamma chains demonstrated that the wild type gamma chain, but not the mutant gamma chains, is phosphorylated. These results suggest that the cytoplasmic tyrosine residues and tyrosine phosphorylation are required for Fc gamma RIIIA to mediate two signal transduction events: phagocytosis and calcium mobilization.
J G Park, R K Murray, P Chien, C Darby, A D Schreiber
Heparin shows blood pressure lowering effect in hypertensive patients and animal models. The present study examined the effect of heparin on vasoconstrictor endothelin-1 (ET-1) production in cultured human umbilical vein endothelial cells (ECs) to elucidate the mechanism of antihypertensive effect of heparin. Heparin suppressed both basal and thrombin-stimulated ET-1 mRNA expression paralleled with a decrease in ET-1 peptide release in a dose-dependent manner. Heparin concomitantly enhanced nitric oxide (NO) formation measured by NO2/NO3 levels and cGMP production in ECs. These enhancements were more marked when ECs were stimulated by thrombin. However, these heparin's effects were blunted in the presence of endothelium-derived nitric oxide (EDNO) synthesizing inhibitor NG-monomethyl L-arginine. Therefore, these results suggest that suppression of ET-1 production by heparin is EDNO mediated.
K Yokokawa, H Tahara, M Kohno, A K Mandal, M Yanagisawa, T Takeda