Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Human monocyte colony-stimulating factor stimulates the gene expression of monocyte chemotactic protein-1 and increases the adhesion of monocytes to endothelial monolayers.
Y J Shyy, … , K L Sung, S Chien
Y J Shyy, … , K L Sung, S Chien
Published October 1, 1993
Citation Information: J Clin Invest. 1993;92(4):1745-1751. https://doi.org/10.1172/JCI116762.
View: Text | PDF
Research Article

Human monocyte colony-stimulating factor stimulates the gene expression of monocyte chemotactic protein-1 and increases the adhesion of monocytes to endothelial monolayers.

  • Text
  • PDF
Abstract

The stimulation of the human umbilical vein endothelial cell (HUVEC) with recombinant human monocyte-derived colony-stimulating factor (MCSF) increased the gene expression of monocyte chemotactic protein (MCP-1). Northern blot analysis indicated that 50 U/ml of MCSF is the optimal concentration for this effect. The elevation of MCP-1 mRNA started as early as 1 h after stimulation and was maintained for at least 8 h. An increased MCP-1 level in MCSF-treated HUVEC was also demonstrated at the protein level by immunocytochemical staining using a polyclonal MCP-1-specific antibody. HUVEC activated by 50 U/ml of MCSF for 5 h showed a stronger immunofluorescence staining than control cells. Micropipette separation of THP-1 monocytes from HUVEC showed that the activation of both THP-1 and endothelium by MCSF led to an increase in the separation force by more than three times (36.2 +/- 6.7 x 10(-4) vs. 9.6 +/- 3.6 x 10(-4) dyn). An increased adhesiveness was also observed after MCSF activation of peripheral blood monocytes and HUVEC (16.7 +/- 2.7 x 10(-4) vs. 5.2 +/- 0.9 x 10(-4) dyn). The increased adhesive force in both systems was blocked by the use of anti-MCP-1 (5.5 +/- 0.8 x 10(-4) and 6.8 +/- 1.1 x 10(-4) dyn). Similar results were obtained in experiments in which only HUVEC, but not monocytes, were activated by MCSF. This increased adhesion of untreated monocytes to MCSF-activated HUVEC was also blocked by the addition of anti-MCP-1. In contrast, experiments in which only THP-1 or peripheral blood monocytes, but not HUVEC, were treated with MCSF did not show a significant increase of adhesion between these cells. These results indicate that MCSF augments monocyte-endothelium interaction primarily by its action on the endothelial cell and that this function is probably mediated through an increased expression of MCP-1. The MCSF/MCP-1-dependent adhesive mechanism might be operative in the arterial wall in vivo to lead to the trapping of the infiltrated monocyte-macrophage in the subendothelial space during atherogenesis.

Authors

Y J Shyy, L L Wickham, J P Hagan, H J Hsieh, Y L Hu, S H Telian, A J Valente, K L Sung, S Chien

×

Full Text PDF

Download PDF (1.88 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts