D W Crabb
Previous results (Weinberg, J. M., J. A. David, M. Abarzua, and T. Rajan. 1987. J. Clin. Invest. 80:1446-1454) have shown that GSH and glycine (GLY) are cytoprotective during anoxia when added extracellularly. The present studies investigate the role that intracellular GSH plays in this cytoprotection. Proximal renal tubules in suspension prepared with either high (11 +/- 1 nmol/mg protein) or low (6 +/- 1 nmol/mg protein) GSH contents were subjected to 40 min of anoxia and 40 min of reoxygenation. Low GSH tubules were protected from plasma membrane damage during anoxia by exogenous addition of 1 mM GSH or GLY, reducing lactate dehydrogenase (LDH) release from 42 +/- 7 to 14 +/- 1 and 10 +/- 1%, respectively. High GSH tubules were equally protected from anoxic damage without exogenous additions. Since the high GSH content approximates the in vivo values, it may be concluded that GSH may be cytoprotective during anoxia in vivo. However, it is not the intracellular GSH itself that is cytoprotective; rather, this protection resides in the ability to produce GLY, which appears to be the cytoprotective agent. Alanine was also shown to have similar cytoprotective properties, although higher concentrations were required. Sulfhydryl reducing agents such as cysteine and dithiothreitol offered less, but significant protection from anoxic damage. Protection by GSH, GLY, or alanine was not associated with higher ATP levels during anoxia. Tubules that were protected from membrane damage during anoxia recovered oxygen consumption and K and ATP contents significantly better during reoxygenation than unprotected tubules.
L J Mandel, R G Schnellmann, W R Jacobs
Autoantibodies to a polymerase III transcription factor, La (SS-B), are frequently detected in the serum of patients with Sjogren's syndrome and systemic lupus erythematosus. To define the humoral immune response to this protein, we analyzed the patterns of antibody recognition toward 13 recombinant La peptides by immunoblotting and determined the heterogeneity of antibodies reactive with the immunodominant epitopes. The smallest epitopes that were strongly antigenic and recognized by greater than 70% of sera tested (immunodominant) were encoded by the subclones BgX and XA located in the 5' and 3' halves of the La cDNA, respectively. Conformation of the immunodominant La peptides played a major role in antibody recognition. Although greater diversity in antibody binding to carboxyl-terminal La peptides was observed, the overall pattern of peptide recognition by anti-La antibodies was similar in different diseases. The antibody responses to the immunodominant peptides were strongly correlated (r = 0.68, P less than 0.001). One- and two-dimensional isoelectric focusing of affinity purified IgG anti-La peptide antibodies revealed restricted heterogeneity and oligoclonal bands (kappa light chains). These observations suggest that anti-La antibodies are induced and/or maintained by the self antigen and that their diversity is constrained either by mechanisms related to tolerance or by affinity maturation of the humoral immune response.
P Bini, J L Chu, C Okolo, K Elkon
Phenotypic heterogeneity in X-linked hypophosphatemic rickets (XLH) is ascribed to variable penetrance of the genetic abnormality. However, studies of hypophosphatemic (Hyp) and gyrorotary (Gy) mice indicate that mutations at different loci along the X chromosome may underlie the genetically transmitted hypophosphatemic disorders. Thus, genetic heterogeneity may be a determinant of the phenotypic variability in XLH. To determine if such variance includes biochemical diversity, we examined whether Gy mice, similar to Hyp mice, exhibit abnormal regulation of renal 25-hydroxyvitamin D (25[OH]D)-1 alpha-hydroxylase. Serum phosphorus in Gy (4.7 +/- 0.3 mg/dl) and phosphate (P)-depleted mice (4.9 +/- 0.4) was significantly less than normal (8.4 +/- 0.5). Consistent with P depletion, the Gy mice exhibited enhanced renal 25(OH)D-1 alpha-hydroxylase activity (9.3 +/- 0.6 fmol/mg kidney per min), similar to that of P-depleted normals (9.1 +/- 1.5), but significantly greater than that of controls (3.1 +/- 0.3). Such normal enzyme responsiveness was confirmed upon PTH stimulation (1 IU/h s.c.), which revealed that Gy mice increased renal 1-hydroxylase (59 +/- 7.7) similarly to normals (65 +/- 7.7) and P-depleted animals (58.4 +/- 7.8). Calcitonin administration also enhanced enzyme function comparably in the animal models. Evidence confirming normally responsive calcitriol production in untreated Gy mice included increased serum 1,25-dihydroxyvitamin D levels, gastrointestinal calcium absorption, and urinary calcium. The normally regulated vitamin D metabolism in Gy mice indicates that biochemically diverse disease may result from mutations in the gene family regulating renal P transport and underlying X-linked hypophosphatemia. We suspect such heterogeneity is due to altered P transport at variable segments of the proximal convoluted tubule.
G A Davidai, T Nesbitt, M K Drezner
Cystinosis is an autosomal recessive disorder characterized by a high intracellular cystine concentration. To establish an in vitro model of this disorder and examine the mechanism of the proximal tubule transport defect seen with elevated intracellular cystine concentrations, rabbit proximal convoluted tubules (PCT) were perfused in vitro. PCTs were loaded with cystine using cystine dimethyl ester, a permeative methyl ester derivative. Bath cystine dimethyl ester (0.5 mM) reduced volume absorption (Jv) (0.67 +/- 0.07 to 0.15 +/- 0.09 nl/mm.min, P less than 0.01), bicarbonate transport (JTCO2) (47.2 +/- 4.9 to 11.1 +/- 2.8 pmol/mm.min, P less than 0.001) and glucose transport (JGLU) (34.1 +/- 1.5 to 19.7 +/- 1.5 pmol/mm.min, P less than 0.001). The methyl esters of leucine (0.5 mM), and tryptophan (0.5 and 2.0 mM) had no effect on these parameters. To examine if intracellular reduction of cystine to cysteine could contribute to the inhibition in transport, the effect of bath cysteine methyl ester on proximal tubular transport was examined. Bath cysteine methyl ester (2 but not 0.5 mM) resulted in an inhibition in Jv, JGLU, and JTCO2. Cystine dimethyl ester had no effect on mannitol or bicarbonate permeability. These data are consistent with intracellular proximal tubular cystine accumulation resulting in an inhibition of active transport.
R F Salmon, M Baum
The maturation of the neuromodulatory action of substance P (SP) was investigated in tracheal smooth muscle (TSM) segments isolated from rabbits aged 2-24 wk. The tissues were placed in baths containing Krebs-Ringer solution and contracted with electrical field stimulation (ES) with ES frequencies ranging from 1 to 75 Hz. In tissues greater than 1 mo of age, the ES frequency-response relationships were progressively shifted in the presence of a maximally effective neuromodulatory SP dose (10(-7) M) such that by 24 wk of age the mean (+/- SEM) maximal tension (Tmax) significantly increased from 380.4 (+/- 41.9) to 502.3 (+/- 64.2) g/g TSM, and the corresponding mean (+/- SEM) log ES frequency producing 50% of Tmax (log ES50) significantly decreased from 1.209 (+/- 0.069) to 1.055 (+/- 0.046) Hz. By contrast, relative to methacholine, the direct contractile effects of SP did not significantly vary with age. In further analyzing the basis for the above age-related difference in the neuromodulatory action of SP, we found that the magnitude of SP-induced neuromodulation was highly correlated to the tissue's intrinsic sensitivity to ES. Indeed, after accounting for the tissue's sensitivity to ES, the effect of age alone on the magnitude of SP-induced neuromodulation was not statistically significant. These findings provide new evidence that: (a) SP-induced neuromodulation of acetylcholine release at the airway neuromuscular junction is significantly enhanced during postnatal development; and (b) that the latter age-dependent action of SP is based on a close coupling of the magnitude of SP-induced neuromodulation to the tissue's intrinsic sensitivity to neurally mediated contraction.
D T Tanaka, M M Grunstein
Attachment of pathogens to host cells is a prerequisite for the development of many infections. Pneumocystis carinii (PC) pneumonia is characterized by attachment of PC trophozoites to the alveolar epithelium. The mechanism of this process is unknown. Fibronectin (Fn) is a glycoprotein present in the alveolar space known to mediate cell-cell attachment, including the attachment of certain pathogens to host epithelial cells. In this study the binding of Fn to PC trophozoites has been characterized in vitro using 125I-Fn. Fn binds saturably and specifically to 6.4 x 10(5) binding sites per organism with an apparent binding constant, Kd, of 1.2 x 10(-8) M. Fn binding to PC was inhibited by the addition of Arg-Gly-Asp-Ser (RGDS), a tetrapeptide containing the active site of the cell-binding domain of Fn. PC attachment to an alveolar epithelial cell line was quantified using 51Cr-labeled PC trophozoites. Attachment was decreased from 24 +/- 1.9% to 12.1 +/- 1% (P less than 0.01) by the addition of an anti-Fn antibody, an effect that could be overcome by the addition of excess free Fn. It is concluded that binding of Fn to PC may be an important initial step in the attachment of the organism to alveolar epithelial cells. Furthermore, it appears that PC recognizes and binds to the RGDS cell attachment site of Fn.
S T Pottratz, W J Martin 2nd
Cholesteryl ester transfer activity is increased in plasma of cholesterol-fed rabbits. To investigate the mechanisms leading to changes in activity, we measured cholesteryl ester transfer protein (CETP) mass by RIA and CETP mRNA abundance by Northern and slot blot analysis using a human CETP cDNA probe in control (n = 8) and cholesterol-fed rabbits (n = 10). Cholesterol feeding (chow plus 0.5% cholesterol, 10% corn oil) for 30 d increased CETP mass in plasma 3.2-fold in the cholesterol-fed rabbits (12.45 +/- 0.82 micrograms/ml) compared with controls (3.86 +/- 0.38 micrograms/ml). In the hypercholesterolemic rabbit, liver CETP mRNA levels were increased 2.8 times control mRNA levels. Actin, apo E, lecithin-cholesterol acyltransferase, and albumin mRNA abundances were unchanged. In contrast to the widespread tissue distribution in humans, CETP mRNA was not detected in extrahepatic tissues of either control or cholesterol-fed animals. Using a sensitive RNase protection assay, the increase in liver CETP mRNA was detectable within 3 d of beginning the high cholesterol diet. Thus, in response to the atherogenic diet there is an early increase in liver CETP mRNA, probably causing increased CETP synthesis and secretion, and increased plasma CETP. The results indicate that the CETP gene may be regulated by diet-induced changes in lipid metabolism.
E M Quinet, L B Agellon, P A Kroon, Y L Marcel, Y C Lee, M E Whitlock, A R Tall
There are at least three major African haplotype backgrounds on which the beta s mutation arises. Sequence changes in the immediate 5' flanking area of the gamma-globin genes may account for differences in fetal hemoglobin expression among the three haplotypes. We determined the sequence from -350 to 10 bp 5' of the G gamma and A gamma fetal globin genes from one beta s-containing chromosome on each of the three major haplotype backgrounds. The Senegal chromosome had a T at -158 5' to the G gamma gene; the Benin (BEN) chromosome had an A to G change at -309 5' to the G gamma gene; and the Central African Republic (CAR) chromosome had a C to T change at -271 5' to the A gamma gene. Genomic DNA from patients with sickle cell disease was analyzed using the polymerase chain reaction and radiolabeled allele-specific oligonucleotide probes. The -309 G variant 5' to the G gamma gene is associated with BEN chromosomes, and the -271 T variant 5' to A gamma with CAR. The -309 change was also found on beta A-containing chromosomes, while the -271 change was not. The -309 change may have predated the beta s mutation on the BEN chromosome.
S R Month, R W Wood, P T Trifillis, P J Orchowski, B Sharon, S K Ballas, S Surrey, E Schwartz
Toxoplasma gondii is a common protozoan disease that often causes life-threatening disease, particularly among patients with the acquired immunodeficiency syndrome. This study demonstrates that the dihydropteroate synthase in T. gondii is kinetically distinct from the enzyme characterized from other sources and can be highly purified with a high yield using sequential dye-affinity chromatography. Conditions have been identified that allow for stabilization of the purified enzyme, and its physical characteristics have been elucidated. The molecular weight of the native protein was 125,000 and the protein appeared to contain both dihydropteroate synthase and 6-hydroxymethyl-dihydropterin pyrophosphokinase activities. The sulfonamide class of compounds vary in inhibitory potency by more than three orders of magnitude. Sulfathiazole, sulfamethoxazole, and sulfamethazine, with 50% inhibitory concentrations (IC50's) of 1.7, 2.7, and 5.7 microM, respectively, represent the most potent of this class of inhibitors. Several sulfone analogues, including dapsone, were identified as highly potent inhibitors with IC50's less than 1 microM. The results of these cell-free experiments were corroborated by investigating the metabolic inhibition produced by the various inhibitors in intact organisms. The qualitative and quantitative relations among the inhibitors were preserved in both the cell-free and intact cell assay systems. These studies suggest that the sulfones may be important therapeutic agents for the treatment of toxoplasmosis.
C J Allegra, D Boarman, J A Kovacs, P Morrison, J Beaver, B A Chabner, H Masur
Structure elucidation of a specific fluorophore from the aging extracellular matrix revealed the presence of a protein crosslink formed through nonenzymatic glycosylation of lysine and arginine residues. The unexpected finding that a pentose instead of a hexose is involved in the crosslinking process suggested that the crosslink, named pentosidine, might provide insight into abnormalities of pentose metabolism in aging and disease. This hypothesis was investigated by quantitating pentosidine in hydrolysates of 103 human skin specimens obtained randomly at autopsy. Pentosidine level was found to increase exponentially from 5 to 75 pmol/mg collagen over lifespan (r = 0.86, P less than 0.001). A three- to tenfold increase was noted in insulin-dependent diabetic and nondiabetic subjects with severe end-stage renal disease requiring hemodialysis (P less than 0.001). Moderately elevated levels were also noted in some very old subjects, some subjects with non-insulin dependent diabetes, and two subjects with cystic fibrosis and diabetes. The cause of the abnormal pentose metabolism in these conditions is unknown but may relate to hemolysis, impaired pentose excretion, cellular stress, and accelerated breakdown of ribonucleotides. Thus, pentosidine emerges as a useful tool for assessment of previously unrecognized disorders of pentose metabolism in aging and disease. Its presence in red blood cells and plasma proteins suggests that it might be used as a measure of integrated pentosemia in analogy to glycohemoglobin for the assessment of cumulative glycemia.
D R Sell, V M Monnier
Ethanol consumption retards the hepatic regenerative response to injury. This may contribute to the pathogenesis of liver injury in alcoholic individuals. The mechanisms responsible for ethanol-associated inhibition of liver regeneration are poorly understood. To determine if the antiregenerative effects of ethanol involve modulation of polyamine metabolism, parameters of polyamine synthesis were compared before and during surgically induced liver regeneration in ethanol-fed rats and isocalorically maintained controls. After partial hepatectomy, induction of the activity of ornithine decarboxylase (ODC), the rate limiting enzyme for polyamine synthesis, was delayed in rats that had been fed ethanol. This was correlated with reduced levels of putrescine, ODC's immediate product. Increases in hepatic spermidine and spermine were also inhibited. Differences in ODC activity between ethanol-fed and control rats could not be explained by differences in the expression of ODC mRNA or by differences in ODC apoenzyme concentrations, suggesting that chronic ethanol intake inactivates ODC posttranslationally. Supplemental putrescine, administered at partial hepatectomy and 4 and 8 h thereafter, increased hepatic putrescine concentrations and markedly improved DNA synthesis and liver regeneration in ethanol-fed rats. These data suggest that altered polyamine metabolism may contribute to the inhibition of liver regeneration that occurs after chronic exposure to ethanol.
A M Diehl, M Wells, N D Brown, S S Thorgeirsson, C J Steer
Pneumocystis carinii pneumonia is a significant cause of mortality in immunocompromised patients. Current concepts suggest that attachment of P. carinii to alveolar epithelium is required for development of pneumonia. We examined the mechanism of P. carinii adherence to cultured A549 cells, a permanent cell line derived from human alveolar epithelium. P. carinii adherence was quantified by measuring attachment of 51Cr-labeled P. carinii to cultured A549 cells. After 8 h of incubation, 37.4 +/- 4.2% of P. carinii were adherent to A549 cells. In the presence of agents known to impair cytoskeletal function, including 10(-5) M cytochalasin B, 10(-5) M colchicine, and 10(-5) M trimethylcolchicinic acid (TMCA), adherence was decreased from 57.4 +/- 4.2% to 9.3 +/- 3.4%, 12.5 +/- 3.6%, and 21.5 +/- 3.6%, respectively (P less than 0.01, all comparisons). Secondly, we examined the effect of P. carinii on the function of A549 cells. P. carinii resulted in significant impairment of A549 cell growth, indicating P. carinii adversely affected the function of target lung cells. A P. carinii:A549 cell ratio of 50:1 resulted in 43.5 +/- 2.9% inhibition of A549 cell growth (P less than 0.001). Additionally, TMCA, which significantly prevented attachment of P. carinii, reversed the impairment of A549 cell growth. These data demonstrate that P. carinii attachment to cultured lung cells can be quantified, is dependent on intact cytoskeletal function and is necessary for impairment of lung cell replication.
A H Limper, W J Martin 2nd
Plasma and lipoprotein alpha-tocopherol concentrations of four patients with familial isolated vitamin E deficiency and six control subjects were observed for 4 d after an oral dose (approximately 15 mg) of RRR-alpha-tocopheryl acetate labeled with six deuterium atoms (d6-tocopherol). Chylomicron d6-tocopherol concentrations were similar in the two groups. d6-Tocopherol concentrations of plasma, very low (VLDL), low (LDL), and high (HDL) density lipoproteins were similar in the two groups only during the first 12 h; then these were significantly lower, and the rate of disappearance faster, in the patients. The times (tmax) of the maximum chylomicron d6-tocopherol concentrations were similar for the two groups, but tmax values in the controls increased in the order: chylomicrons less than VLDL less than or equal to LDL approximately HDL, while the corresponding values in the patients were similar to the chylomicron tmax. Thus, plasma d6-tocopherol in controls increased during chylomicron and VLDL catabolism, whereas in patients it increased only during chylomicron catabolism, thereby resulting in a premature and faster decline in the plasma tocopherol concentration due to a lack of d6-tocopherol secretion from the liver. We suggest that these patients are lacking or have a defective liver "tocopherol binding protein" that incorporates alpha-tocopherol into nascent VLDL.
M G Traber, R J Sokol, G W Burton, K U Ingold, A M Papas, J E Huffaker, H J Kayden
Tetranectin, a protein recently identified in a wide variety of human secretory cells (Christensen, L., and I. Clemmensen. 1989. Histochemistry. 92:29-35) was found to colocalize with latent alkaline phosphatase activity in fractions well separated from azurophil granules, specific granules, gelatinase-containing granules, and plasma membranes when postnuclear supernatants of nitrogen-cavitated neutrophils were fractionated on discontinuous Percoll density gradients. Stimulation of intact neutrophils with nanomolar concentrations of FMLP, leukotriene B4, 10-100 U/ml of tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor resulted in parallel release of tetranectin and translocation of alkaline phosphatase to the plasma membrane. Furthermore, intracellular pools of tetranectin and latent alkaline phosphatase were completely released from neutrophils under conditions that barely induced release of specific granules containing B12-binding protein. These findings indicate that tetranectin and latent alkaline phosphatase define an easily mobilizable population of cytoplasmic storage organelles in human neutrophils which are functionally distinguishable from azurophil, specific, and gelatinase-containing granules. These organelles may play an important role as stores of membrane proteins that are mobilized to the cell surface during stimulation by inflammatory mediators.
N Borregaard, L Christensen, O W Bejerrum, H S Birgens, I Clemmensen
We examined angiotensinogen gene expression in rat kidney by in situ hybridization histochemistry. Using a rat cRNA probe to angiotensinogen, we demonstrated angiotensinogen mRNA to be localized predominantly in the proximal renal tubule, with considerably lesser amounts in distal tubular segments and glomerular tufts. Previous studies have localized renin immunoreactivity to the juxtaglomerular cells, glomerular tufts, and proximal tubules. Such findings provide further evidence for a local tissue renin angiotensin system within the kidney which may influence regional function. Based on our data, we hypothesize that a major site of angiotensin production is the proximal tubule. We postulate that angiotensin synthesized in and/or around the proximal tubule may directly modulate tubular transport of sodium, bicarbonate, and water. In addition to the proximal tubule, the specific localization of the renin angiotensin components elsewhere in the kidney would also support the other proposed regional functions of the intrarenal system, including modulation of tubuloglomerular balance.
J R Ingelfinger, W M Zuo, E A Fon, K E Ellison, V J Dzau
PGE represent oxygenation products of polyunsaturated essential fatty acids and are important regulators of cell-mediated immune responses. Because oils enriched in such fatty acids reduce inflammation and tissue injury in vivo, we examined the effects of these PGE precursors on IL-2-driven growth of human T lymphocytes. Dihomogamma linoleic acid (DGLA), AA, and their metabolites (PGE1 and PGE2, respectively) strongly inhibited short- and long-term growth of IL-2-dependent T cell cultures; EPA was much less inhibitory and its product, PGE3, failed to suppress IL-2 responses. Short-term pretreatment of the cells with DGLA or AA and removal of the fatty acids before the proliferation assay resulted in a smaller reduction in [3H]TdR incorporation. PGE and fatty acids did not alter the number of high affinity IL-2 binding sites on the T cell cultures but reduced the percentage of cells expressing CD25 and HLA class II molecules. No PGE was detected in supernatants from the fatty acid-treated cultures. Moreover, indomethacin, a cyclooxygenase inhibitor, did not reverse the antiproliferative effects of the fatty acids. Together, these findings indicate that fatty acids can inhibit IL-2-driven T cell growth via a PGE-independent mechanism and might be relevant to inflammatory diseases associated with persistent T cell activation.
D Santoli, P D Phillips, T L Colt, R B Zurier
Acidic and basic fibroblast growth factors (aFGF and bFGF) are angiogenic polypeptide mitogens for cells of mesodermal and neuroectodermal origin. In this report we describe the purification from several normal human hearts (including a very fresh, nonischemic sample) of heparin-binding, acid-, heat- and trypsin-sensitive 14-18-kD peptides that crossreact with antisera against aFGF and bFGF. Further evidence includes (a) prevention of mitogenicity by protamine and by anti-bFGF, (b) displacement of 125I-bFGF from cell membranes, and (c) stimulation of capillary endothelial cell migration. Specific immunohistochemistry localized bFGF to endothelial cells and, surprisingly, to cardiac myocytes, with almost no immunoreactivity in smooth muscle cells. These peptides may function in cardiac embryogenesis, hypertrophy, atherogenesis, angiogenesis, and wound healing, and may also have endocrine, neurotropic, or vasomotor functions.
W Casscells, E Speir, J Sasse, M Klagsbrun, P Allen, M Lee, B Calvo, M Chiba, L Haggroth, J Folkman
The effects of tumor necrosis factor (TNF) on the regulation of macrophage-specific colony stimulating factor (CSF-1) gene expression have been studied in HL-60 cells during monocytic differentiation. CSF-1 transcripts were undetectable in uninduced HL-60 cells, reached maximal levels by 3 h of exposure to TNF, and returned to that of control cells by 24 h. Transcriptional run-on analysis demonstrated that exposure to TNF stimulated the rate of CSF-1 gene transcription by 6.4-fold. The combination of a protein synthesis inhibitor, cycloheximide, and TNF increased levels of CSF-1 mRNA compared with treatment by TNF alone. We also studied the signal transduction mechanisms responsible for regulating TNF-induced CSF-1 mRNA levels. Both 4-bromophenacyl bromide and quinacrine, inhibitors of phospholipase A2 activity, blocked TNF-induced increases in CSF-1 transcripts in a concentration-dependent manner, while caffeic acid and nordihydroguaiaretic acid, inhibitors of the 5-lipoxygenase pathway, had no detectable effect on induction of CSF-1 RNA. PGE2 or dibutyryl cAMP treatment of HL-60 cells in the presence of TNF blocked the expression of CSF-1 mRNA in a dose-dependent manner. These findings suggest that the increase in CSF-1 RNA observed during TNF treatment is regulated, at least in part, by both transcriptional and posttranscriptional mechanisms, and that PGE2 and cAMP regulate transcriptional activation of the CSF-1 gene by TNF.
M L Sherman, B L Weber, R Datta, D W Kufe
Activated macrophages release tissue forms of insulin-like growth factor I (IGF-I), 20-25-kD products of the IGF-I gene, thus providing an extracellular growth and differentiation signal at sites of inflammation. To examine the control of IGF-I gene expression in mononuclear phagocytes, the human macrophage-like cell line U937 was evaluated at rest and after surface activation with phorbol myristate acetate (PMA) or Ca2+ ionophore. Northern analysis and RNAse protection analysis with 32P-labeled IGF-I-specific probes demonstrated that the IGF-I mRNA transcripts of resting U937 cells were similar in size and amount to those of resting human alveolar macrophages, mononuclear phagocytes known to express the IGF-I gene. Nuclear run-off assays demonstrated that surface activation of U937 cells increased the transcription rate of the IGF-I gene four- to fivefold, a process that was inhibited by cycloheximide, suggesting that active protein synthesis was involved in the activation pathway. Despite this, cytoplasmic IGF-I mRNA levels after surface activation declined markedly, a process blocked by a protein kinase C inhibitor (for PMA activation) or a calmodulin antagonist (for Ca2+ ionophore activation). Like the increased transcription of the IGF-I gene, modulation of IGF-I mRNA transcript levels required active protein synthesis; in the presence of cycloheximide constitutive IGF-I mRNA levels increased and surface activation no longer caused a decrease in transcript number. Interestingly, surface activation caused a rapid release of IGF-I, even in the presence of a protein synthesis inhibitor, suggesting that mononuclear phagocytes have a preformed, stored, releasable pool of IGF-I. Together these observations demonstrate that IGF-I gene expression is complex and probably involves control of transcription rate, cytoplasmic mRNA levels possibly mediated through protein kinase C, calcium influx and calmodulin, and finally, release of preformed IGF-I from a storage pool.
I Nagaoka, B C Trapnell, R G Crystal
Bisphosphonates are useful in treatment of disorders with increased osteoclastic activity, but the mechanism by which bisphosphonates act is unknown. We used cultures of chicken osteoclasts to address this issue, and found that 1-hydroxyethylidenediphosphonic acid (EHDP), dichloromethylidenediphosphonic acid (Cl2MDP), or 3-amino-1-hydroxypropylidene-1,1-diphosphonic acid (APD) all cause direct dose-dependent suppression of osteoclastic activity. Effects are mediated by bone-bound drugs, with 50% reduction of bone degradation occurring at 500 nM to 5 microM of the different agents. Osteoclastic bone-binding capacity decreased by 30-40% after 72 h of bisphosphonate treatment, despite maintenance of cell viability. Significant inhibition of bone resorption in each case is seen only after 24-72 h of treatment. Osteoclast activity depends on ATP-dependent proton transport. Using acridine orange as an indicator, we found that EHDP reduces proton accumulation by osteoclasts. However, inside-out plasma membrane vesicles from osteoclasts transport H+ normally in response to ATP in high concentrations of EHDP, Cl2MDP, or APD. This suggests that the bisphosphonates act as metabolic inhibitors. Bisphosphonates reduce osteoclastic protein synthesis, supporting this hypothesis. Furthermore, [3H]leucine incorporation by the fibroblast, which does not resorb bone, is also diminished by EHDP, Cl2MDP and APD except when co-cultured with bisphosphonate-binding bone particles. Thus, the resorption-antagonizing capacities of EHDP, Cl2MDP and APD reflect metabolic inhibition, with selectivity for the osteoclast resulting from high affinity binding to bone mineral.
A Carano, S L Teitelbaum, J D Konsek, P H Schlesinger, H C Blair
The current studies were undertaken to explore the relationship between enhanced sympathetic nervous activity and lymphocyte subset distribution in three settings: congestive heart failure, dynamic exercise, and beta-adrenergic agonist treatment. We compared the number and subset distribution of circulating lymphocytes in 36 patients with congestive heart failure and 31 age-matched control subjects. The number of circulating lymphocytes was lower in heart failure than in control. This was due to a reduction in Tsuppressor/cytotoxic and natural killer cells without significant alteration of Thelper cells. The extent of the alteration was similar in patients with idiopathic and ischemic heart failure, but the reduction was more pronounced in patients with New York Heart Association class III-IV than in class I-II. The plasma catecholamine elevation in heart failure was also independent of etiology but more pronounced in the more severely ill patients. We also assessed lymphocyte subsets after acute stimulation of sympathetic activity by dynamic exercise and after treatment with the beta-adrenergic agonist terbutaline. Dynamic exercise until exhaustion increased the number of circulating lymphocytes in healthy controls and heart failure patients in a subset-selective manner. By contrast, a 7-d treatment with terbutaline caused a reduction in the circulating number of lymphocytes in some subsets that was identical to that seen in heart failure patients. We conclude that prolonged sympathetic activity reduces the number of circulating lymphocytes by a beta-adrenergic mechanism. Such alterations might be involved in the pathophysiology of heart failure and other disease states involving increased activity of the sympathetic nervous system.
A S Maisel, K U Knowlton, P Fowler, A Rearden, M G Ziegler, H J Motulsky, P A Insel, M C Michel
Anti-Jo-1 antibodies (AJoA), which bind to and inhibit the activity of histidyl-transfer RNA synthetase (HRS), are found in a genetically and clinically distinct subset of myositis patients. This specificity suggests that understanding the antigenic epitopes and immunoregulation governing the production of AJoA may result in clues to disease pathogenesis. Limited digestion of human HRS by V8 protease resulted in four major antigenic polypeptides of 35, 34, 21, and 20 kD; digestion with subtilisin gave four fragments of the same sizes and two additional major antigenic polypeptides of 28 and 17 kD. Sera from 12 AJoA positive patients reacted indistinguishably with these proteolytic fragments by Western blotting, and AJoA elution studies suggested a common epitope(s) on all six. Isoelectric focusing showed a different polyclonal pattern of AJoA in each patient, although serial analyses in individual patients revealed stable AJoA spectrotypes over years of observation. Enzyme-linked immunosorbent assays showed that the AJoA response was mainly restricted to the IgG1 heavy chain isotype. The levels of IgG1 AJoA varied in proportion to disease activity over time but were independent of total IgG1 levels, and three patients became AJoA negative as their myositis remitted after treatment. These findings suggest that AJoA are induced by an antigen-driven mechanism, bind to a common epitope or epitopes on HRS, and are modulated by an immune response closely linked to that which is responsible for myositis in these patients.
F W Miller, S A Twitty, T Biswas, P H Plotz
Insulin-stimulated glycogen synthase activity in human skeletal muscle correlates with insulin-mediated glucose disposal rate (M) and is reduced in insulin-resistant subjects. We have previously reported reduced insulin-stimulated glycogen synthase activity associated with reduced fasting glycogen synthase phosphatase activity in skeletal muscle of insulin-resistant Pima Indians. In this study we investigated the time course for insulin stimulation of glycogen synthase and synthase phosphatase during a 2-h high-dose insulin infusion (600 mU/min per m2) in six insulin-sensitive caucasians (group S) and in five insulin-resistant Pima Indians (group R). Percutaneous muscle biopsies were obtained from the quadriceps femoris muscle after insulin infusion for 0, 10, 20, 40, and 120 min. In group S, insulin-stimulated glycogen synthase activity increased with time and was significantly higher than in group R. In group S, synthase phosphatase activity increased significantly by 25% at 10 min and then decreased gradually. No significant change in synthase phosphatase was seen in group R and activity was lower than group S at 0 to 20 min. These data suggest that a low basal synthase phosphatase activity and a defect in its response to insulin explain, at least in part, reduced insulin stimulation of skeletal muscle glycogen synthase associated with insulin resistance.
Y Kida, A Esposito-Del Puente, C Bogardus, D M Mott
Recent evidence has suggested that pancreatic islets isolated from rats synthesize 1,2-diacyl-sn-glycerol (DAG) de novo from glucose and that this process may constitute the long-sought link between the metabolism of glucose and the induction of insulin secretion. The cell-permeant diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol (200 microM) has been found here to amplify both the first and second phases of insulin secretion from perifused human islets. Measurements of the mass of endogenous DAG in human pancreatic islets by enzymatic and by mass spectrometric methods indicate that levels of 200 microM may be achieved under physiologic conditions. Conversion of [14C]glucose to [14C]DAG has been demonstrated here to occur within 60 s of exposure of rat and human islets to stimulatory concentrations of glucose. This process has been found to be a quantitatively minor contributor to the total islet DAG mass after acute stimulation with glucose, however, and glucose has been found not to induce a rise in total islet DAG content within 20 min of induction of insulin secretion. In contrast to the case with rodent islets, two pharmacologic inhibitors of DAG-induced activation of protein kinase C (staurosporine and sphingosine) have been found not to influence glucose-induced insulin secretion from isolated human islets. These findings indicate that de novo synthesis of DAG from glucose does not participate in acute signal-response coupling in islets.
B A Wolf, R A Easom, M L McDaniel, J Turk
To investigate the regulation of membrane voltage and transmembrane ion fluxes in human neutrophils, we studied plasma membrane currents using the whole-cell patch-clamp method. We observed three distinct ion channel currents: (a) a voltage-dependent K+ current, (b) a Ca2(+)-activated K+ current, and (c) a Ca2(+)-activated Cl- current. The voltage-dependent K+ current was found in cells at rest. Its conductive properties suggested an inwardly rectifying channel. The channel was activated at membrane potentials more positive than -60 mV, suggesting that it may determine the resting membrane potential of neutrophils. Activation of neutrophils by the Ca2+ ionophore ionomycin led to an increase in whole-cell K+ and Cl- currents. The Ca2(+)-activated K+ channel differed from the voltage-dependent K+ channel because it was insensitive to voltage, because it rectified outwardly, and because the voltage-sensitive K+ channel was Ca2(+)-independent. The Ca2(+)-activated Cl- channel showed outward rectification and no apparent voltage dependency. The Ca2(+)-activated K+ and Cl- channels may play a role in cell volume homeostasis and/or cellular activation.
K H Krause, M J Welsh
The present in vitro microperfusion study examined apical membrane Na+/H+ antiporter and basolateral membrane Na(HCO3)3 symporter activity in newborn and adult juxtamedullary proximal convoluted tubules. Proton fluxes were determined from the initial rate of change of intracellular pH after a change in the luminal or bathing solution, buffer capacity, and tubular volume of newborn and adult tubules. Intracellular pH (pHi) was measured fluorometrically using the pH-sensitive dye (2',7')-bis (carboxyethyl)-(5,6)-carboxyfluorescein (BCECF). Apical Na+/H+ antiporter proton flux, assayed by the effect of sodium removal (147----0 meq/liter) on pHi, was one-third the adult level for the first 2 wk and doubled in the 3rd wk of life. Adult levels were achieved by 6 wk of age. Na+/H+ antiporter activity was not detected on the basolateral membrane of 1-wk-old newborns, indicating that polarity of this transporter was already present. Basolateral membrane Na(HCO3)3 proton flux, assayed by the effect of a bath bicarbonate change (25----5 meq/liter) and by a bath sodium change (147----0 meq/liter) on pHi, was 50-60% of adult values in 1-wk-old newborns. Basolateral membrane Na(HCO3)3 proton flux assayed by a bath bicarbonate change (25----5 meq/liter) remained at 50-60% of adult values for the 1st mo of life and increased to adult levels by 6 wk of age. This transporter not only plays a role in net acidification, but is an important determinant of cell pH in newborn juxtamedullary proximal convoluted tubules.
M Baum
Cardiac-specific gene expression is intricately regulated in response to developmental, hormonal, and hemodynamic stimuli. To test whether cardiac muscle might be a target for regulation by peptide growth factors, the effect of three growth factors on the actin and myosin gene families was investigated by Northern blot analysis in cultured neonatal rat cardiac myocytes. Transforming growth factor-beta 1 (TGF beta 1, 1 ng/ml) and basic fibroblast growth factor (FGF, 25 ng/ml) elicited changes corresponding to those induced by hemodynamic load. The "fetal" beta-myosin heavy chain (MHC) was up-regulated about four-fold, whereas the "adult" alpha MHC was inhibited greater than 50-60%; expression of alpha-skeletal actin increased approximately two-fold, with little or no change in alpha-cardiac actin. Thus, peptide growth factors alter the program of differentiated gene expression in cardiac myocytes, and are sufficient to provoke fetal contractile protein gene expression, characteristic of pressure-overload hypertrophy. Acidic FGF (25 ng/ml) produced seven- to eightfold reciprocal changes in MHC expression but, unlike either TGF-beta 1 or basic FGF, inhibited both striated alpha-actin genes by 70-90%. Expression of vascular smooth muscle alpha-actin, the earliest alpha-actin induced during cardiac myogenesis, was increased by all three growth factors. Thus, three alpha-actin genes demonstrate distinct responses to acidic vs. basic FGF.
T G Parker, S E Packer, M D Schneider
To investigate the temporal relationship of antibody responses to different La epitopes, sequential sera from nine patients with systemic lupus erythematosus and Sjogren's syndrome were tested by enzyme-linked immunosorbent assay for antibody binding to a series of recombinant fusion proteins containing different regions of the La molecule. The results of this analysis indicate that antibody responses to four different La fragments vary in parallel over time. This finding is supported by a statistical analysis indicating that the changes in antibody levels between the six pairs of responses were highly correlated (P less than 0.001). Furthermore, we show by immunoaffinity purification that antibodies to the three nonoverlapping La protein fragments do not cross-react with other fragments and, hence, represent independent populations. These results suggest that anti-La antibodies are coordinately produced to different epitopes on the La molecule, possibly reflecting an antigen-driven mechanism.
E W St Clair, J A Burch Jr, M M Ward, J D Keene, D S Pisetsky
To examine whether reduced rates of oxidative (Gox) and non-oxidative (Nox) glucose metabolism in non-insulin-dependent diabetes mellitus (NIDDM) are due to reduced glucose uptake, intrinsic defects in intracellular glucose metabolism or increased fat oxidation (Fox), indirect calorimetry was performed at similar glucose uptake rates in eight nonobese NIDDM and eight comparable nondiabetic subjects. Three glucose clamp studies were performed: one in the nondiabetic and two in the NIDDM subjects. In the nondiabetic subjects, glucose uptake was increased to 7.62 +/- 0.62 mg/kg of fat-free mass (FFM) per min by increasing serum insulin to 309 pmol/liter at a glucose concentration of 5.1 mmol/liter. By raising the concentration of either serum glucose or insulin fourfold in the NIDDM subjects, glucose uptake was matched to nondiabetic subjects (8.62 +/- 0.49 and 8.59 +/- 0.51 mg/kg FFM per min, respectively, P = NS). Skeletal muscle glycogen synthase activity and plasma lactate levels were measured to characterize Nox. When glucose uptake was matched to nondiabetics by hyperglycemia or hyperinsulinemia, Gox was reduced by 26-28% in NIDDM (P less than 0.025) whereas Fox was similar. Nox was greater in NIDDM (P less than 0.01) and was accompanied by increases in circulating lactate levels. Glycogen synthase activity was reduced by 41% (P less than 0.025) when glucose uptake was matched by hyperglycemia. Glycogen synthase activity was normalized in NIDDM, however, when glucose uptake was matched by hyperinsulinemia. Therefore, a defect in Gox exists in nonobese NIDDM subjects which cannot be overcome by increasing glucose uptake or insulin. Since both glucose uptake and Fox were similar in the two subject groups these factors were not responsible for reduced Gox. Increased Nox in NIDDM is primarily into lactate. Reduced glycogen synthase activity in NIDDM is independent of glucose uptake but can be overcome by increasing the insulin concentration.
A W Thorburn, B Gumbiner, F Bulacan, P Wallace, R R Henry
We have studied several monoclonal anti-double-stranded (ds) DNA antibodies for their ability to accelerate lupus nephritis in young NZB X NZW F1 female mice and to induce it in BALB/c mice. Two identified as pathogens in both strains have characteristics previously associated with nephritogenicity: expression of IgG2a isotype and IdGN2 idiotype. Both pathogenic antibodies used the combination of genes from the VHJ558 and VK9 subfamilies. Two weak pathogens failed to accelerate nephritis in young BW mice, but induced lupus nephritis in BALB/c mice. They both express IdGN2; one is cationic and an IgG3, the other is an IgG2a. Additional MAbs (some IgG2a, one IdGN2-positive) did not accelerate or induce nephritis. We have cloned and sequenced the variable regions of the immunoglobulin genes of one pathogenic autoantibody. No unique V, D, or J gene segments and no evidence of unusual mechanisms in generating diversity were used to construct this antibody. These data argue against use of unique abnormal Ig genes by systemic lupus erythematosus individuals to construct pathogenic autoantibody subsets. Instead, the major abnormality may be immunoregulatory.
B P Tsao, F M Ebling, C Roman, N Panosian-Sahakian, K Calame, B H Hahn
The effect of enalapril on glomerular hemodynamics and permselectivity and on subsequent sclerosis was studied in male MWF/Ztm rats which spontaneously develop proteinuria and glomerular structural damage. Untreated group 1 and enalapril-treated group 2 (50 mg/liter, in the drinking water) underwent micropuncture studies after 2 mo of observation. After the same period of treatment, group 3 (untreated) and group 4 (enalapril treated) were used for determination of whole-kidney function and neutral dextran clearances. Group 5 (untreated) and group 6 (enalapril treated) were followed for an additional 4 mo and used for kidney function and morphological studies. Enalapril significantly lowered systolic blood pressure, which was elevated in untreated groups, and significantly reduced proteinuria (295 +/- 64 vs. 128 +/- 24 mg/24 h by the end of the study). Despite the reduced renal perfusion pressure, whole-kidney glomerular filtration rate was higher in enalapril-treated than in untreated rats (0.96 +/- 0.14 vs. 0.81 +/- 0.10 ml/min, P less than 0.05) as was the single nephron glomerular filtration rate (54 +/- 7.1 vs. 46 +/- 4.0 nl/min, P less than 0.05). The single glomerular afferent plasma flow was comparable in both groups. Enalapril reduced mean glomerular capillary hydraulic pressure from the normal value of 51 +/- 1 mmHg (untreated rats) to a value lower than normal (44 +/- 1 mmHg, P less than 0.001). These hemodynamic changes were associated with a significant reduction in afferent (approximately 23%) and efferent (approximately 26%) arteriolar resistance. The mean ultrafiltration coefficient was two times higher in the enalapril (0.126 +/- 0.027 nl/s per mmHg) than in the untreated group (0.061 +/- 0.023 nl/s per mmHg). The clearance of dextran macromolecules relative to that of inulin was significantly reduced for all molecular sizes studied (26-64 A) in enalapril-treated vs. untreated rats. Theoretical analysis of dextran fractional clearances using a heteroporous model of neutral solute transport across the glomerular capillary wall indicated that enalapril affected glomerular membrane size selective properties, reducing uniformly the radius of hypothetical membrane pores. Enalapril treatment also significantly limited (P less than 0.01) the development of glomerular structural lesions (mean percentage of sclerotic glomeruli was 4.2 +/- 3.5% [treated] vs. 28 +/- 15% [untreated] rats at the end of the study) as well as tubulo-interstitial damage. These results suggest that the protective effect of enalapril on the development of proteinuria and glomerular sclerosis in this model is due to its property of ameliorating size selectivity and hydraulic permeability of the glomerular capillaries.
A Remuzzi, S Puntorieri, C Battaglia, T Bertani, G Remuzzi
We used denaturing gradient gel electrophoresis to detect the beta-thalassemia mutations in the Chinese population. By amplifying the beta-globin gene in four separate fragments and electrophoresing the amplified DNA in two gels, we were able to distinguish all the 12 known mutations on the basis of the mobility of the homoduplexes and heteroduplexes. We conclude that denaturing gradient gel electrophoresis offers a nonradioactive means of detecting multiple mutations in genetic disorders.
S P Cai, Y W Kan
HOCl, which is produced by the action of myeloperoxidase during the respiratory burst of stimulated neutrophils, was used as a cytotoxic reagent in P388D1 cells. Low concentrations of HOCl (10-20 microM) caused oxidation of plasma membrane sulfhydryls determined as decreased binding of iodoacetylated phycoerythrin. These same low concentrations of HOCl caused disturbance of various plasma membrane functions: they inactivated glucose and aminoisobutyric acid uptake, caused loss of cellular K+, and an increase in cell volume. It is likely that these changes were the consequence of plasma membrane SH-oxidation, since similar effects were observed with para-chloromercuriphenylsulfonate (pCMBS), a sulfhydryl reagent acting at the cell surface. Given in combination pCMBS and HOCl showed an additive effect. Higher doses of HOCl (greater than 50 microM) led to general oxidation of -SH, methionine and tryptophan residues, and formation of protein carbonyls. HOCl-induced loss of ATP and undegraded NAD was closely followed by cell lysis. In contrast, NAD degradation and ATP depletion caused by H2O2 preceded cell death by several hours. Formation of DNA strand breaks, a major factor of H2O2-induced injury, was not observed with HOCl. Thus targets of HOCl were distinct from those of H2O2 with the exception of glyceraldehyde-3-phosphate dehydrogenase, which was inactivated by both oxidants.
I U Schraufstätter, K Browne, A Harris, P A Hyslop, J H Jackson, O Quehenberger, C G Cochrane
The importance of oxidative cytocidal mechanisms of phagocytic cells in immune protection against microbial pathogens is uniquely revealed by chronic granulomatous disease (CGD), a genetic deficiency disease of man. This cytocidal response in mononuclear phagocytes is principally regulated by IFN-gamma. A somatic cell genetic approach was taken to select oxidative variants from a cloned murine macrophage cell line, J774.16, which formally permitted us to dissociate three regulatory effects of IFN-gamma on these cells: the antiproliferative effect, the antiviral effect, and production of superoxide anion. Half of the variants defective in O-2 production after phorbol myristate acetate stimulation were also resistant to the antiproliferative effects of IFN-gamma. This result suggests that IFN-gamma-induced growth inhibition and production of cytocidal oxygen intermediates are mediated via a common pathway. The somatic cell genetic approach has allowed us to develop in vitro macrophage models for several forms of CGD. One variant characterized in detail, D9, was unable to produce superoxide after stimulation by phorbol esters. At the molecular level, Northern blot analysis revealed that the mRNA encoding the large subunit of the putative CGD gene product, cytochrome b558, was absent in this variant. Another class of variants constitutively unable to produce O-2 or the cytochrome b558 mRNA could be induced to do so by IFN-gamma. These somatic mutants may be useful models in clarifying the role of the CGD gene product and its regulation in the production of cytocidal oxygen intermediates.
M Goldberg, L S Belkowski, B R Bloom
Proteinaceous cast formation in the distal nephron of the kidney from low molecular weight proteinuria is a significant, but poorly characterized, cause of renal failure. To study this phenomenon, we: (a) microperfused the loop segment (LS) of rats in vivo with artificial tubule fluid (ATF) containing four different low molecular weight proteins, 0.01-50 mg/ml, to detect alterations in LS function, and (b) examined the interaction between several proteins and Tamm-Horsfall glycoprotein (THP) in vitro with turbidity and dynamic light-scattering measurements. Perfusion of the LS for less than 2 min with cast-forming proteins (Bence Jones protein [BJP3] and myoglobin) decreased chloride absorption and elevated early distal tubule fluid (ED) [Cl-], compared with results obtained with control perfusions that used ATF alone. BJP3 decreased chloride absorption in a concentration-dependent fashion. Perfusion with non-cast-forming proteins (albumin and BJP1) enhanced chloride absorption and decreased ED [Cl-]. In vitro, proteins that had isoelectric points (pI) greater than 5.1 aggregated with THP. Aggregation was enhanced with increasing [NaCl] or [CaCl2]. Albumin (pI 4.8) and beta-lactoglobulin (pI 5.1) did not coprecipitate. The molecular size of THP alone increased when [NaCl] greater than 80 mM. Thus, cast-forming proteins aggregated with THP in vitro and caused in vivo LS dysfunction, which elevated ED [Cl-], facilitating aggregation. In contrast, non-cast-forming proteins either did not interact with THP or lowered ED [Cl-], which did not provide an environment for aggregation. Altered LS function and interaction of some proteins with THP were related to different physicochemical properties of the proteins and independently contributed to the formation of proteinaceous casts in the kidney.
P W Sanders, B B Booker, J B Bishop, H C Cheung
The present study was designed to determine whether cerebrovascular autoregulation is intact in experimental meningitis and to examine the relationship between fluctuations in cerebral blood flow (CBF) and increased intracranial pressure (ICP). Measurements of CBF were determined by the radionuclide microsphere technique in rabbits with experimental Streptococcus pneumoniae meningitis with simultaneous ICP monitoring via an implanted epidural catheter. CBF and ICP measurements were determined at baseline and when mean arterial blood pressure (MABP) was artificially manipulated by either pharmacologic or mechanical means. CBF was pressure passive with MABP through a range of 30-120 torr, and ICP directly correlated with CBF. These findings indicate that autoregulation of the cerebral circulation is lost during bacterial meningitis, resulting in a critical dependency of cerebral perfusion on systemic blood pressure, and that the parallel changes in ICP and in CBF suggest that fluctuations in CBF may influence intracranial hypertension in this disease.
J H Tureen, R J Dworkin, S L Kennedy, M Sachdeva, M A Sande
Pretreatment with low-dose IL-1 has protective effects in animal models of inflammation or tissue injury, but the mechanisms of these protective effects are not established. To determine if prostaglandins are involved, we administered human recombinant IL-1 beta and measured rectal PGE2 production in rabbits with formalin-immune complex colitis. IL-1 beta (0.3 micrograms/kg) administered 24 h before induction of colitis increased PGE2 (231 +/- 36 to 1,299 +/- 572 pg/ml, P less than 0.01) and reduced subsequent inflammatory cell infiltration index (from 2.8 +/- 0.3 to 1.4 +/- 0.3, P less than 0.02) and edema (from 2.5 +/- 0.3 to 1.3 +/- 0.3, P less than 0.01) compared with vehicle-matched animals. Administration of ibuprofen (10 mg/kg i.v.) together with IL-1 beta prevented the stimulation of PGE2 and the reduction in inflammation. Colonic PGE2 production correlated inversely with subsequent severity of inflammation (P less than 0.02, r = -0.39) and edema (P less than 0.04, r = -0.35). IL-1-administration 30 min before induction of colitis did not affect the severity of inflammation. Similarly, pretreatment with a noninflammatory synthetic peptide (fragment 163-171) of human IL-1 beta, either 30 min or 24 h before colitis induction, did not reduce inflammation or increase prostaglandin synthesis. These data demonstrate that pretreatment with IL-1 beta 24 h before the induction of colitis reduces inflammation by a mechanism that requires prostaglandin synthesis.
F Cominelli, C C Nast, R Llerena, C A Dinarello, R D Zipser
This study was designed to examine whether endothelin is released from the intima of intact arteries, and whether endothelium-derived nitric oxide regulates its production. Endothelin was detected in the incubating medium of unstimulated pig aortae with, but not in those without endothelium. In preparations with endothelium, thrombin (2-6 U/ml) and the calcium ionophore A23187 (10(-6) M) stimulated the release of the peptide. The basal and thrombin-stimulated production of endothelin were prevented by the protein synthetase inhibitor cycloheximide (10(-6) M). The production of endothelin upon stimulation with thrombin (4 U/ml) was potentiated by L-NG-monomethyl arginine and methylene blue and reduced by superoxide dismutase and 8-bromo cyclic guanosine 5'-monophosphate (GMP), while the basal release of the peptide was unaffected. Thus, (a) endothelin is released from the intimal layer of intact blood vessels, both under basal conditions and after stimulation with thrombin and the calcium ionophore A23187, and (b) endothelium-derived nitric oxide released during stimulation with thrombin inhibits the production of the peptide via a cyclic GMP-dependent pathway.
C Boulanger, T F Lüscher
The synthesis of tumor necrosis factor (TNF)/cachectin was assessed in primary monocyte-derived macrophage (MDM) cultures after in vitro infection with a macrophage-tropic strain of HIV-1 (HTLV-IIIBa-L/85). Productive and cytopathic infections in MDM cultures were established using a high multiplicity of infection (m.o.i. = 3) under conditions that minimized endotoxin contamination. Culture supernatants were tested for TNF/cachectin activity by L929 cell cytotoxicity assay, and TNF/cachectin mRNA was assessed by a sensitive PCR amplification technique that could detect between 1 and 10 cells fully activated for TNF/cachectin expression. Unstimulated MDM cultures produced no detectable levels of TNF/cachectin activity or mRNA, consistent with previous demonstrations that production of this cytokine by macrophages is an inducible and not a constitutive event. HIV-1 infection failed to induce detectable TNF/cachectin activity or mRNA in these unstimulated cultures. In addition, the responsiveness of macrophages to lipopolysaccharide (LPS) induction of TNF/cachectin production was assessed in dose-response and kinetic experiments. No differences between infected and uninfected cultures were discernable. These results demonstrate that productive and cytopathic infection with a macrophage-tropic strain of HIV-1 does not alter the regulation of TNF/cachectin expression in macrophages.
J R Munis, D D Richman, R S Kornbluth
We have studied rat vascular smooth muscle (VSM) cells in culture for the presence of key elements of the glandular kallikrein-kinin system. Direct radioimmunoassay (RIA) using antiserum against rat urinary kallikrein detected a glandular kallikrein-like enzyme (GKLE) in VSM cells and in media. VSM homogenates and culture media had kininogenase activity, generating kinins from dog kininogen. About half of the GKLE was enzymatically inactive which could be activated with trypsin. Kininogenase activity was inhibited completely by aprotinin but only 20% by soybean trypsin inhibitor (SBTI). Trypsin liberated kinins from homogenates and media, demonstrating that VSM cells contain kininogen. Homogenates and media rapidly degrade bradykinin. GKLE, kininogen, and bradykininase activity were all present in VSM cells grown in defined media that contain no serum, thus eliminating any contamination or artefacts from fetal calf serum in standard culture media. Blood vessels of the rat have been reported to contain GKLE. Our observations indicate that GKLE is synthesized by VSM cells, not deposited from plasma. Furthermore, VSM cells synthesize kininogen and bradykininase(s), the other key elements of the glandular kallikrein-kinin system. Thus it is possible that the system functions as an autocoid mechanism that regulates local vascular tone.
N B Oza, J H Schwartz, H D Goud, N G Levinsky
When human neutrophils were co-cultured for 72 h with nontransformed human fibroblasts, 69 +/- 3% (n = 13) survived, as compared with survival levels of 2 +/- 1% (n = 15) and 26 +/- 6% (n = 7), respectively, for neutrophils cultured for the same time period in enriched medium alone or supplemented with 10 pM recombinant human granulocyte/macrophage colony-stimulating factor (rh GM-CSF). Conditioned medium from the human fibroblast cultures enhanced neutrophil survival in a dose-dependent fashion to the same level achieved with neutrophil/fibroblast co-cultures, and its soluble viability-sustaining activity was not inhibited by preincubation with neutralizing antiserum against rh GM-CSF. As compared with freshly isolated replicate samples, neutrophils co-cultured with human fibroblasts for 72 h exhibited augmented FMLP-stimulated superoxide production without spontaneous superoxide generation. This striking extension of survival and associated priming for a ligand response by neutrophils co-cultured with human fibroblasts suggests that fibroblasts may contribute to the proinflammatory properties of neutrophils in tissues.
C J Ling, W F Owen Jr, K F Austen
T lymphocytes and mononuclear cells preferentially accumulate in the epidermis in inflammatory skin disease. To determine the role of keratinocytes in both the chemotaxis and adhesion of these cells to the epidermis, cultured keratinocytes were incubated with IFN-gamma and tumor necrosis factor-alpha (TNF-alpha), and mRNA detected and quantitated for IL-8, monocyte chemotaxis and activating factor, and intercellular adhesion molecule-1. Whereas induction of these mRNAs was either absent, or relatively weak and transient, to either IFN-gamma or TNF-alpha alone, when administered in combination there was a dramatic increase and persistence in the induction of all three genes. Pretreatment of the keratinocytes with cycloheximide failed to eliminate transcription, implying that all three are primary response genes. Transforming growth factor-beta, which modulates other keratinocyte functions (not related to adhesion or chemotaxis of inflammatory cells) failed to induce any of the genes. These novel findings potentially explain the selective recruitment of T cells and monocytes observed in inflammatory skin disease, because IFN-gamma and TNF-alpha can co-ordinately regulate keratinocyte-derived chemoattractants and adhesion molecule production.
J N Barker, V Sarma, R S Mitra, V M Dixit, B J Nickoloff