Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 11 patents
48 readers on Mendeley
  • Article usage
  • Citations to this article (255)

Advertisement

Research Article Free access | 10.1172/JCI114459

Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro.

A Carano, S L Teitelbaum, J D Konsek, P H Schlesinger, and H C Blair

Department of Pathology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Find articles by Carano, A. in: PubMed | Google Scholar

Department of Pathology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Find articles by Teitelbaum, S. in: PubMed | Google Scholar

Department of Pathology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Find articles by Konsek, J. in: PubMed | Google Scholar

Department of Pathology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Find articles by Schlesinger, P. in: PubMed | Google Scholar

Department of Pathology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Find articles by Blair, H. in: PubMed | Google Scholar

Published February 1, 1990 - More info

Published in Volume 85, Issue 2 on February 1, 1990
J Clin Invest. 1990;85(2):456–461. https://doi.org/10.1172/JCI114459.
© 1990 The American Society for Clinical Investigation
Published February 1, 1990 - Version history
View PDF
Abstract

Bisphosphonates are useful in treatment of disorders with increased osteoclastic activity, but the mechanism by which bisphosphonates act is unknown. We used cultures of chicken osteoclasts to address this issue, and found that 1-hydroxyethylidenediphosphonic acid (EHDP), dichloromethylidenediphosphonic acid (Cl2MDP), or 3-amino-1-hydroxypropylidene-1,1-diphosphonic acid (APD) all cause direct dose-dependent suppression of osteoclastic activity. Effects are mediated by bone-bound drugs, with 50% reduction of bone degradation occurring at 500 nM to 5 microM of the different agents. Osteoclastic bone-binding capacity decreased by 30-40% after 72 h of bisphosphonate treatment, despite maintenance of cell viability. Significant inhibition of bone resorption in each case is seen only after 24-72 h of treatment. Osteoclast activity depends on ATP-dependent proton transport. Using acridine orange as an indicator, we found that EHDP reduces proton accumulation by osteoclasts. However, inside-out plasma membrane vesicles from osteoclasts transport H+ normally in response to ATP in high concentrations of EHDP, Cl2MDP, or APD. This suggests that the bisphosphonates act as metabolic inhibitors. Bisphosphonates reduce osteoclastic protein synthesis, supporting this hypothesis. Furthermore, [3H]leucine incorporation by the fibroblast, which does not resorb bone, is also diminished by EHDP, Cl2MDP and APD except when co-cultured with bisphosphonate-binding bone particles. Thus, the resorption-antagonizing capacities of EHDP, Cl2MDP and APD reflect metabolic inhibition, with selectivity for the osteoclast resulting from high affinity binding to bone mineral.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 456
page 456
icon of scanned page 457
page 457
icon of scanned page 458
page 458
icon of scanned page 459
page 459
icon of scanned page 460
page 460
icon of scanned page 461
page 461
Version history
  • Version 1 (February 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (255)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 11 patents
48 readers on Mendeley
See more details