Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (52)

Advertisement

Research Article Free access | 10.1172/JCI114458

Regulation of insulin-like growth factor I gene expression in the human macrophage-like cell line U937.

I Nagaoka, B C Trapnell, and R G Crystal

Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

Find articles by Nagaoka, I. in: PubMed | Google Scholar

Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

Find articles by Trapnell, B. in: PubMed | Google Scholar

Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

Find articles by Crystal, R. in: PubMed | Google Scholar

Published February 1, 1990 - More info

Published in Volume 85, Issue 2 on February 1, 1990
J Clin Invest. 1990;85(2):448–455. https://doi.org/10.1172/JCI114458.
© 1990 The American Society for Clinical Investigation
Published February 1, 1990 - Version history
View PDF
Abstract

Activated macrophages release tissue forms of insulin-like growth factor I (IGF-I), 20-25-kD products of the IGF-I gene, thus providing an extracellular growth and differentiation signal at sites of inflammation. To examine the control of IGF-I gene expression in mononuclear phagocytes, the human macrophage-like cell line U937 was evaluated at rest and after surface activation with phorbol myristate acetate (PMA) or Ca2+ ionophore. Northern analysis and RNAse protection analysis with 32P-labeled IGF-I-specific probes demonstrated that the IGF-I mRNA transcripts of resting U937 cells were similar in size and amount to those of resting human alveolar macrophages, mononuclear phagocytes known to express the IGF-I gene. Nuclear run-off assays demonstrated that surface activation of U937 cells increased the transcription rate of the IGF-I gene four- to fivefold, a process that was inhibited by cycloheximide, suggesting that active protein synthesis was involved in the activation pathway. Despite this, cytoplasmic IGF-I mRNA levels after surface activation declined markedly, a process blocked by a protein kinase C inhibitor (for PMA activation) or a calmodulin antagonist (for Ca2+ ionophore activation). Like the increased transcription of the IGF-I gene, modulation of IGF-I mRNA transcript levels required active protein synthesis; in the presence of cycloheximide constitutive IGF-I mRNA levels increased and surface activation no longer caused a decrease in transcript number. Interestingly, surface activation caused a rapid release of IGF-I, even in the presence of a protein synthesis inhibitor, suggesting that mononuclear phagocytes have a preformed, stored, releasable pool of IGF-I. Together these observations demonstrate that IGF-I gene expression is complex and probably involves control of transcription rate, cytoplasmic mRNA levels possibly mediated through protein kinase C, calcium influx and calmodulin, and finally, release of preformed IGF-I from a storage pool.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 448
page 448
icon of scanned page 449
page 449
icon of scanned page 450
page 450
icon of scanned page 451
page 451
icon of scanned page 452
page 452
icon of scanned page 453
page 453
icon of scanned page 454
page 454
icon of scanned page 455
page 455
Version history
  • Version 1 (February 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (52)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts