Studies with synthetic metal-porphyrin complexes in which the central iron atom of heme is replaced by other elements indicate that those heme analogues that cannot be enzymatically degraded to bile pigments possess novel biological properties that may have considerable clinical as well as experimental value. Such studies have revealed the important role that the central metal atom plays in determining the physiological and pharmacological properties of metal-porphyrin complexes; and they have demonstrated that the form in which animals and humans are exposed to trace metals, i.e., inorganic, organified, porphyrin-chelated, etc., can be of great importance in determining the biological responses that such elements elicit, especially with respect to actions on heme synthesis and degradation and cytochrome P-450 formation and function. Study of the biological properties of synthetic metalloporphyrins represents a potentially fruitful area of research and the results may have significant value for basic as well as clinical disciplines.
A Kappas, G S Drummond
To determine the presence and distribution of cardiac myosin isozymes in the human conduction system, we performed an immunohistochemical study using monoclonal antibodies CMA19 and HMC14, which are specific for myosin heavy chains of human atrial type (alpha-type) and ventricular type (beta-type), respectively. Serial frozen sections of human hearts were obtained from autopsy samples and examined by indirect immunofluorescence. Alpha-type was found in all myofibers of sinus node and atrio-ventricular node, and in 55.2 +/- 10.2% (mean +/- SD, n = 5) of the myofibers of ventricular conduction tissue, which consists of the bundle of His, bundle branches, and the Purkinje network. In contrast, beta-type was found in all myofibers of the atrio-ventricular node and ventricular conduction tissue, whereas almost all myofibers of the sinus node were unlabeled by HMC14. Although the number of ventricular myofibers labeled by CMA19 was small, the labeled myofibers were more numerous in the subepicardial region than in the subendocardial region. These findings show that the gene coding for alpha-type is expressed predominantly in specialized myocardium compared with the adjacent ordinary working myocardium.
M Kuro-o, H Tsuchimochi, S Ueda, F Takaku, Y Yazaki
Serosal application of carbachol to T84 cell monolayers mounted in an Ussing chamber caused an immediate increase in short circuit current (Isc) that peaked within 5 min and declined rapidly thereafter, although a small increase in Isc persisted for approximately 30 min. The increase in Isc was detectable with 1 microM carbachol; half-maximal with 10 microM carbachol; and maximal with 100 microM carbachol. Unidirectional Na+ and Cl- flux measurements indicated that the increase in Isc was due to net Cl- secretion. Carbachol did not alter cellular cAMP, but caused a transient increase in free cytosolic Ca2+ ([Ca2+]i) from 117 +/- 7 nM to 160 +/- 15 nM. The carbachol-induced increase in Isc was potentiated by either prostaglandin E1 (PGE1) or vasoactive intestinal polypeptide (VIP), agents that act by increasing cAMP. Measurements of cAMP and [Ca2+]i indicated that the potentiated response was not due to changes in these second messengers. Studies of the effects of these agents on ion transport pathways indicated that carbachol, PGE1, or VIP each increased basolateral K+ efflux by activating two different K+ transport pathways on the basolateral membrane. The pathway activated by carbachol was not sensitive to barium, while that activated by PGE1 or VIP was; furthermore, their action on K+ efflux are additive. Our study indicates that carbachol causes Cl- secretion, and that this action may result from its ability to increase [Ca2+]i and basolateral K+ efflux. Carbachol's effect on Cl- secretion is greatly augmented in the presence of VIP or PGE1, which open a cAMP-sensitive Cl- channel on the apical membrane, accounting for a potentiated response.
K Dharmsathaphorn, S J Pandol
The relationship between (a) "tallness" and (b) cross-sectional area of the endothelial cells (EC) of postcapillary venules (PCV) and capillaries and the cellular composition of adjacent perivascular mononuclear cell infiltrates in rheumatoid (RA) synovial membrane has been examined by electron microscopy. "Tallness" of the EC was measured as the ratio of the height of the EC to its base (H/B). H/B showed a strong positive correlation with the number and percent of perivascular lymphocytes, i.e., the denser the lymphoid aggregation, the taller the EC. In contrast, H/B showed negative correlations with percent perivascular plasma cells, macrophages, and fibroblast(cyte)s. No such correlations were observed with pericapillary infiltrates. A computer-based morphometric technique yielded similar relationships between the cross-sectional area of the EC and the composition of the perivascular infiltrates. These results indicate that the EC of PCV in lymphocyte-rich areas of synovium tend to be tall and to occupy an increased fraction of the cross-sectional area of the vessel. In contrast, in areas rich in macrophages and plasma cells, EC tend to be flat and to occupy a smaller fraction of the cross-sectional area. PCV in uninfiltrated interstitial areas and in normal synovium had flat EC, and capillaries had flat EC regardless of the character of the surrounding infiltrate. Finally, PCV in lymphocyte-rich areas closely resembled those of tonsil in appearance. Our findings indicate that the PCV of the RA synovial membrane from which lymphocytes emigrate to form perivascular lymphoid aggregates resemble those of lymphoid tissue. They suggest that chronic inflammatory tissue and normal lymphoid tissue share mechanisms of lymphocyte emigration.
T Iguchi, M Ziff
To identify the molecular site of thrombin binding to the platelet membrane, we covalently linked 125I-thrombin to platelets by using the bifunctional chemical cross-linking agents disuccinimidyl suberate and dithiobis(succinimidyl propionate). The proteins cross-linked to 125I-thrombin by this method were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and followed by autoradiography. Two radiolabeled thrombin complexes were identified, a major species of Mr approximately 200,000 and a minor one of Mr approximately 400,000. Hirudin prevented the formation of both complexes. The radioactivity of the approximately 200,000-Mr complex was always 7-10-fold greater than the radioactivity of the approximately 400,000-Mr complex regardless of the thrombin concentration to which the platelets were exposed (0.1-29 nM). Although 125I-thrombin complexes generated with thrombasthenic platelets (lacking glycoprotein IIb/IIIa) were indistinguishable from normal, no complexes appeared when Bernard-Soulier platelets (lacking glycoprotein Ib [GPIb]) were used. Complex formation was blocked by rabbit antiglycocalicin antiserum, but not by the monoclonal antibody 6D1, which is directed against the site on GPIb where von Willebrand factor (vWf) binds in the presence of ristocetin. Although cross-linking studies suggested that vWf might partially inhibit thrombin binding to platelets, this was not confirmed by equilibrium binding studies in the presence of vWf and ristocetin. The data suggest, therefore, that at all thrombin concentrations binding occurs at the same membrane site, despite evidence from equilibrium studies for high and low affinity classes of receptors, and that the approximately 400,000-Mr complex is simply a dimer of the approximately 200,000-Mr species. We conclude that the membrane site to which thrombin binds is the glycocalicin portion of platelet GPIb at a site remote from the point of ristocetin-dependent vWf binding.
J Takamatsu, M K Horne 3rd, H R Gralnick
The purpose of this study was to determine the effect of vasoactive substances released by aggregating platelets on adrenergic neurotransmission in canine coronary arteries. Isometric tension was recorded in isolated ring segments of coronary artery denuded of endothelium and the release of [3H]norepinephrine was measured from strips of coronary artery preincubated with the radiolabeled transmitter. Transmural electrical field stimulation and exogenously added norepinephrine caused beta adrenergic relaxations of coronary rings contracted by prostaglandin F2 alpha. In coronary rings further contracted by the addition of aggregating platelets in numbers less than that present in blood, the response to electrical stimulation was inhibited and the sensitivity to norepinephrine reduced. Micromolar concentrations of adenosine diphosphate, adenosine triphosphate, and 5-hydroxytryptamine were released by platelets under these experimental conditions. The reduced response to electrical stimulation was in part due to inhibition of the stimulated release of [3H]-norepinephrine. The combination of the serotonergic antagonist, methiothepin, and the purinergic antagonist, theophylline, attenuated the inhibition of the responses of coronary rings; either antagonist alone failed to do so, but did significantly block the reductions caused by 5-hydroxytryptamine and adenosine diphosphate, respectively. In addition, only the combination of the two antagonists significantly attenuated the inhibition of norepinephrine release caused by platelets. These data suggest that both adenine nucleotides and 5-hydroxytryptamine are important mediators of the prejunctional and postjunctional inhibition of coronary beta adrenergic neurotransmission caused by platelets.
R A Cohen
Recent studies on the gene sequence encoding the human pyloric antral hormone, gastrin, indicate a precursor of 101 residues. We have now raised antibodies to a synthetic analogue corresponding to (Tyr)-human progastrin COOH-terminal pentapeptide. The antibodies could be used in radioimmunoassay to measure this peptide, but they did not react with corresponding fragments of procholecystokinin, porcine progastrin, or other human progastrin-derived peptides, notably heptadecapeptide gastrin (G17), and 34-residue gastrin (G34). Radioimmunoassay of human antral and duodenal extracts revealed a major peak of activity that corresponded to the native COOH-terminal fragment of progastrin, and occurred in approximately equimolar amounts with COOH-terminal G17 immunoreactivity. In addition, there was a minor peak of apparently higher molecular weight material. In some gastrinomas the latter material was the predominant immunoreactive form, and it occurred in higher molar concentrations than any other form of gastrin. Digestion of this material with trypsin liberated peptides that reacted with antibodies specific for the NH2-terminus of G34, and G17. On this basis the high molecular weight component was identified as a form of gastrin that extended from the COOH-terminus of the precursor to a point at least beyond the NH2-terminus of G34, and probably included the entire progastrin sequence. The results suggest differences in posttranslational processing pathways of progastrin in antrum, duodenum, and gastrinomas. They also indicate that the present experimental approach allows the identification of progastrin-like substances, which should open the way to studying the mechanisms of gastrin biosynthesis.
S Pauwels, H Desmond, R Dimaline, G J Dockray
Abnormal myocardial composition in diabetes mellitus has been described, but the effects on ventricular vulnerability have not been defined. We have assessed the susceptibility to arrhythmias in a canine model after 1 yr of mild diabetes induced by alloxan. Since physical conditioning can affect metabolic abnormalities in diabetes, this intervention has also been evaluated. Group 1 served as controls and groups 3 and 4 were diabetic. Animals in the latter group as well as nondiabetic controls of group 2 were exercised on a treadmill for the last 8 mo of the experiment. After 1 yr, anesthesia was induced with chloralose for vulnerability studies. The ventricular fibrillation threshold of 24.4 +/- 1.9 mA in group 3 was significantly less than in normals (45.1 +/- 2.2). Spontaneous arrhythmias were also more prevalent in diabetics during acute ischemia (group 3-A). Increased ventricular vulnerability after epinephrine infusion was present in the sedentary diabetes despite normal ventricular function responsiveness. In a superfused preparation of myocardium, resting membrane potential and action potential amplitude were normal in diabetics, and beta-adrenergic stimulation shortened repolarization more than in controls. Myocardial collagen concentrations, which included an interfibrillar distribution on morphologic examination, were increased in group 3. In the trained diabetics of group 4 the basal vulnerability thresholds and responses to epinephrine were normal. While myocardial collagen levels were normal, cholesterol and triglyceride increments persisted. Thus, in mild experimental diabetes, enhanced susceptibility to arrhythmias exists; this susceptibility may be based on a combination of nonhomogenous collagen accumulation affecting local conduction and increased electrophysiologic sensitivity to catecholamines.
S Bakth, J Arena, W Lee, R Torres, B Haider, B C Patel, M M Lyons, T J Regan
Stratification of human epidermal cells into multilayered sheets composed of basal and suprabasal layers (resembling the stratum germinativum and stratum spinosum of the epidermis) was studied in a dermal component-free culture system. Although no stratum corneum developed in vitro, this culture system provided a method to study early events in human keratinocyte differentiation. Multiparameter flow cytometric analysis of acridine orange-stained epidermal cells from these cultures revealed three distinct subpopulations differing in cell size, RNA content, and cell cycle kinetics. The first subpopulation was composed of small basal keratinocytes with low RNA content and a long generation time. The second subpopulation consisted of larger keratinocytes, having higher RNA content and a significantly shorter generation time. Finally, the third subpopulation contained the largest cells, which did not divide, and represent the more terminally differentiated keratinocytes. This in vitro approach provides discriminating cytochemical parameters by which the maturity of the epidermal cell sheets can be assessed prior to grafting onto human burn patients.
L Staiano-Coico, P J Higgins, Z Darzynkiewicz, M Kimmel, A B Gottlieb, I Pagan-Charry, M R Madden, J L Finkelstein, J M Hefton
A coagulation Factor V inhibitor developed in a man 75 yr of age in association with an anaplastic malignancy and drug treatment (including the aminoglycoside antibiotic, gentamicin). The patient did not bleed abnormally, despite both surgical challenge and plasma Factor V activity of less than 1%. The inhibited plasma had grossly prolonged prothrombin and activated partial thromboplastin times, but a normal thrombin time. Mixing studies indicated progressive coagulation inhibition with normal plasma, but not with Factor V-deficient plasma, and reversal of coagulation inhibition by the addition of bovine Factor V to the patient's plasma. 1 ml of patient plasma inhibited the Factor V activity of 90 ml of normal human plasma. The inhibitor was isolated by sequential affinity chromatography on protein A-Sepharose and Factor V-Sepharose. The IgG isolate markedly inhibits the activity of prothrombinase assembled from purified Factors Xa and Va, calcium ion, and phospholipid vesicles, and partially inhibits prothrombinase assembled from purified Factor Xa, calcium ion, and normal platelets. The Factor V of platelets, however, appears relatively inaccessible to the antibody, inasmuch as platelets isolated from whole blood supplemented for 8 h with the antibody functioned normally with respect to platelet Factor V-mediated prothrombinase function. The absence of obvious hemorrhagic difficulties in the patient, the total inhibition of plasma Factor V by the inhibitor, and the apparent inaccessibility of platelet Factor V to the inhibitor specifically implicate platelet Factor V in the maintenance of hemostasis.
M E Nesheim, W L Nichols, T L Cole, J G Houston, R B Schenk, K G Mann, E J Bowie
Protein C is a natural vitamin K-dependent plasma anticoagulant, deficiencies of which have been found in patients with recurrent thrombosis and warfarin-induced skin necrosis. To appreciate more fully the role of protein C in disease states and during oral anticoagulation, a new functional assay for protein C involving adsorption of plasma protein C on a Ca+2-dependent monoclonal antibody, elution, quantitative activation, and assessment of plasma anticoagulant activity, has been developed. When oral anticoagulation is initiated, the anticoagulant activity of protein C decreases to a greater extent than either the amidolytic or immunologic levels. During stabilized warfarin treatment, there is no correlation between either amidolytic or antigenic levels and the functional protein C activity, suggesting that measurement of protein C anticoagulant activity may be necessary to reflect adequately the anticoagulant protection afforded by this protein. In contrast, there was a strong correlation between anticoagulant and amidolytic and immunologic levels in liver failure and disseminated intravascular coagulation. Two patients with thromboembolic disease have been identified who exhibit a marked decrease in anticoagulant activity, but who have normal immunologic and amidolytic levels. Thus, this assay permits assessment of protein C in individuals who have received anticoagulant treatment and identification of a new class of protein C-deficient individuals.
S Vigano D'Angelo, P C Comp, C T Esmon, A D'Angelo
We have identified 39 individuals with anti-centromere antibodies (ACA) in our patient population, all of whom have Raynaud's syndrome or disease. We have used sera from the ACA-positive patients and from 123 controls (22 normal individuals and 101 additional patients with either Raynaud's disease or Raynaud's syndrome plus an associated connective tissue disease) to screen the proteins of highly purified human (HeLa) mitotic chromosomes by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. Three antigens were recognized by the sera from the ACA-positive patients. These were centromere protein (CENP)-B (80,000 mol wt--recognized by all ACA-positive sera), CENP-A (17,000 mol wt--recognized by 38 of 39 ACA-positive sera), and CENP-C (140,000 mol wt--recognized by 37 of 39 ACA-positive sera). None of these antigens were recognized by any of the 123 control sera, although binding was occasionally seen to other chromosomal antigens. Therefore the ACA response is highly uniform in our patient population. Antibody to CENP-B shows a 100% correlation with anti-centromere staining by indirect immunofluorescence.
W Earnshaw, B Bordwell, C Marino, N Rothfield
In order to determine the molecular basis of uroporphyrinogen (URO) decarboxylase deficiency responsible for hepatoerythropoietic porphyria (HEP) and familial porphyria cutanea tarda, we used a human URO decarboxylase cDNA to analyze the organization and expression of the URO decarboxylase gene in lymphoblastoid cells from normal individuals and from two patients with HEP. We could detect neither deletions nor rearrangements in the URO decarboxylase gene. Synthesis, processing, and cell-free translation of the specific transcripts appeared to be normal. The half-life of the abnormal protein was 12 times shorter than that of the normal enzyme. The results indicate that the enzyme defect is due to a rapid degradation of the protein in vivo. This study is the first to provide information regarding the molecular mechanism responsible for the URO decarboxylase deficiency in HEP.
H de Verneuil, B Grandchamp, P H Romeo, N Raich, C Beaumont, M Goossens, H Nicolas, Y Nordmann
The purpose of this study was to determine the interactions between bombesin and substance P at the feline lower esophageal sphincter (LES). Intraluminal pressures were recorded using a fixed, perfused catheter assembly. Myoelectrical activity was recorded using bipolar Ag-AgCl serosal electrodes. Bombesin, i.v., gave a dose-dependent increase in LES pressure and electronically counted spike activity. The threshold dose was 10(-7) g/kg, while the maximal dose, 10(-5) g/kg, increased LES pressure by 65.5 +/- 14.8 mmHg. The neuroantagonist, tetrodotoxin, decreased the LES response to bombesin by 74.1% +/- 7.9% (P less than 0.05), but had no significant effect on the LES response to substance P. The sphincteric response to bombesin was not inhibited by bilateral cervical vagotomy, atropine, propranolol, or phentolamine (P less than 0.10). Bombesin tachyphylaxis abolished the LES response to bombesin but had no effect on the response to substance P. Conversely, substance P tachyphylaxis completely abolished the LES response to bombesin (P less than 0.001). The substance P antagonist [D-Pro2, D-Trp7,9]substance P also significantly inhibited the LES response to bombesin (P less than 0.05). Acidification of the distal esophagus with 2.0 ml of 0.1 N HCl increased LES pressure by 32.5 +/- 5.2 mmHg (P less than 0.02). The LES response to acid was inhibited by bombesin tachyphylaxis (maximal pressure response, 4.7 +/- 2.1 mmHg, P less than 0.01 compared with control acid response). The tachyphylaxis techniques were specific for the peptides giving no effect on the LES responses to phenylephrine, bethanechol, or pentagastrin. We drew the following conclusions: (a) bombesin increased feline LES pressure via nonvagal neural pathways that were insensitive to adrenergic or cholinergic antagonists; (b) bombesin may be involved in the enteric pathways that mediate the feline LES response to distal esophageal acidification; and (c) substance P mediates the effect of bombesin at the LES and is a neurotransmitter in the LES response to acidification.
J C Reynolds, M R Dukehart, A Ouyang, S Cohen
Myocardial oxygen consumption is regulated by interrelated mechanical and inotropic conditions; there is a parallel increase in the aerobic metabolism and inotropic state during beta-adrenergic stimulation under fixed mechanical conditions. In contrast, there is some evidence that beta-blockade may reduce oxygen consumption through effects independent of its influence on mechanical conditions and contractile state, and that prolonged beta-blockade may sensitize the myocardium to beta-adrenergic stimulation. To clarify these two points, the present study examined the relationship of myocardial energetics to mechanics and inotropism during acute beta-blockade and after the withdrawal of long-term beta-blockade, whereupon the basis for any effect observed was sought by characterizing the number, affinity, and affinity states of the beta-receptors as well as the coupling of activated beta-receptors to cyclic AMP generation. Studies of right ventricular papillary muscles from control and chronically beta-blocked cats demonstrated contractile and energetic properties as well as dose-response behavior and inotropic specificity suggestive of an increase in myocardial sensitivity to beta-adrenoceptor stimulation in the latter group. Assays of cardiac beta-adrenoceptors from further groups of control and pretreated cats, both in cardiac tissue and in isolated cardiac muscle cells, failed to define a difference between the two groups either in terms of receptor number and affinity or in terms of the proportion of receptors in the high-affinity state. However, coupling of the activated beta-adrenoceptors to cyclic AMP generation was enhanced in cardiac muscle cells from chronically beta-blocked cats. These data demonstrate that beta-adrenoceptor blockade (a) produces parallel effects on inotropic state and oxygen consumption without an independent effect on either and (b) increases myocardial sensitivity to beta-adrenergic stimulation after beta-blockade withdrawal, not by "up-regulation" of the cardiac beta-adrenoceptors, but instead by more effective coupling of these receptors when activated to cyclic AMP generation.
G Cooper 4th, R L Kent, P McGonigle, A M Watanabe
Secretion by tumor cells of circulating bone-resorbing factors may frequently underlie the hypercalcemia that occurs in patients with malignancy. Efforts to identify the responsible mediators have been hampered by a lack of available human tumor cell systems suitable for study of the pathogenesis of the humoral hypercalcemia syndrome. We have established a transitional-cell carcinoma (TCC) line in vitro from a patient with humoral hypercalcemia. These cells are tumorigenic and cause hypercalcemia in athymic nude mice. Culture medium conditioned by TCC cells contains potent bone-resorbing activity in vitro, the physical and biological properties of which are similar to those of bone-resorbing activity present in the original patient's urine. The bone-resorbing activity of the TCC factor is accompanied by increased prostaglandin release from bone and is blocked by indomethacin and calcitonin. The TCC-derived bone-resorbing activity coelutes with prostaglandin-stimulating activity during gel filtration with an approximate molecular weight of 15,000. This activity is nondialyzable, stable to concentrated urea and reducing agents, and destroyed by boiling. The TCC factor does not increase cyclic AMP production in bone or kidney bioassays and does not exhibit transforming growth factor activity. We conclude that a unique macromolecular factor released by TCC cells causes bone resorption by a mechanism dependent upon stimulation of bone cell cyclooxygenase, and that this factor is the probable cause of the hypercalcemia in vivo. The TCC cell line provides a new model for study of the human humoral hypercalcemia syndrome.
F R Bringhurst, B E Bierer, F Godeau, N Neyhard, V Varner, G V Segre
The present study evaluates the effect of acute hypercapnia on renal total CO2 (tCO2) reabsorption after inhibition of renal carbonic anhydrase. Simultaneous renal clearance studies and free-flow micropuncture studies of the superficial proximal tubule were performed on plasma-repleted Sprague-Dawley rats treated with acetazolamide, 50 mg/kg body weight. Acute hypercapnia (arterial PCO2, 120 mmHg; blood pH, 7.02) was induced by ventilation with a 10% CO2-90% O2 gas mixture. Control rats (PCO2, 49.5 mmHg, pH 7.34) were ventilated with room air. The renal fractional excretion of tCO2 was approximately 20% lower in the hypercapnic group compared with the rats given acetazolamide alone. Acute hypercapnia reduced the fractional delivery of tCO2 to the late proximal tubule by a comparable amount. The absolute proximal reabsorption of tCO2 was increased by hypercapnia to 410 +/- 47 vs. 170 +/- 74 pmol X min-1, P less than 0.05. The single nephron glomerular filtration rate was 32.6 +/- 0.7 nl X min-1 in the hypercapnic group and 43.8 +/- 1.7 nl X min-1 in the rats given acetazolamide only, P less than 0.01. Acute hypercapnia enhances renal sympathetic nerve activity. To eliminate this effect, additional experiments were performed in which the experimental kidney was denervated before study. Denervation prevented the change in the single nephron filtration rate during acute hypercapnia, but absolute and fractional proximal tCO2 reabsorption remained elevated in comparison to denervated controls. The concentration of H2CO3 in the late proximal tubule, calculated from the measured luminal pH and bicarbonate concentration and the estimated cortical PCO2, was higher in the hypercapnic group, which was a finding compatible with H2CO3 cycling from lumen into proximal tubular cell, which provided a source of hydrogen ions for secretion.
J Winaver, K A Walker, R T Kunau Jr
Biochemical abnormalities in peripheral nerve are thought to precede and condition the development of diabetic neuropathy, but metabolic intervention in chronic diabetic neuropathy produces only limited acute clinical response. The residual, metabolically unresponsive neurological deficits have never been rigorously defined in terms of either persistent metabolic derangements or irreversible structural defects because human nerve tissue is rarely accessible for anatomical and biochemical study and experimentally diabetic animals do not develop the structural hallmarks of human diabetic neuropathy. Detailed neuroanatomical-functional-biochemical correlation was therefore undertaken in long-term spontaneously diabetic BB-Wistar rats that functionally and structurally model human diabetic neuropathy. Vigorous insulin replacement in chronically diabetic BB rats essentially normalized both the sural nerve fiber caliber spectrum and the decreased sciatic nerve myo-inositol and (Na,K)-ATPase levels generally associated with conduction slowing in diabetic animals; yet, nerve conduction was only partially restored toward normal. Morphometric analysis revealed a striking disappearance of paranodal axo-glial junctional complexes that was not corrected by insulin replacement. Loss of these strategic junctional complexes, which are thought to limit lateral migration of axolemmal Na channels away from nodes of Ranvier, correlates with and can account for the diminished nodal Na permeability and resultant nodal conduction delay characteristic of chronic diabetic neuropathy in this animal model.
A A Sima, S A Lattimer, S Yagihashi, D A Greene
Human monocyte-derived macrophages (HMM) play a key role in the formation of atherosclerotic plaques by accumulating cholesteryl ester (CE) to become foam cells. HMM have receptors for native low density lipoprotein (LDL) and acetylated-LDL (ALDL), and uptake of ALDL can promote substantial cellular CE accumulation. Furthermore, macrophages specifically and saturably bind glucocorticoids, which in turn modulate numerous macrophage functions. Preincubating HMM in dexamethasone-inhibited LDL degradation (230 +/- 12 vs. 515 +/- 21 ng/mg cell protein X 18 h, P less than 0.001) but stimulated ALDL degradation (5.3 +/- 0.5 vs. 2.5 +/- 0.3 micrograms/mg X 18 h, P less than 0.01). These effects were time- and dose-dependent, occurring maximally by 24 h and with 2.5 X 10(-8) M dexamethasone. Dexamethasone increased the maximum velocity for ALDL degradation (16.2 vs. 12.0 micrograms/mg X 18 h, P less than 0.01) without changing the apparent Michaelis constant. Progesterone, 11 alpha-epicortisol, and 17 alpha-OH progesterone (a competitive antagonist of the glucocorticoid receptor) had no effect on HMM ALDL degradation, but 17 alpha-OH progesterone abolished the stimulatory action of dexamethasone. In he presence of ALDL, incorporation of [14C]oleic acid into CE was enhanced over fourfold by dexamethasone (4015 +/- 586 vs. 943 +/- 91 cpm/mg X 2 h, P less than 0.01), and HMM incubated with ALDL and dexamethasone accumulated more free cholesterol (34.6 +/- 1.9 vs. 26.2 +/- 0.8 micrograms/mg, P less than 0.02) and CE (32.8 +/- 2.3 vs. 14.8 +/- 0.8 micrograms/mg, P less than 0.002) than did macrophages without dexamethasone. In cultured human umbilical vein endothelial cells, dexamethasone did not change ALDL degradation, but reduced LDL degradation by 30% (P less than 0.001). In summary, dexamethasone inhibits LDL receptor activity by both macrophages and endothelial cells, but stimulates ALDL receptor activity only in macrophages. These observations provide evidence for the regulation of macrophage endocytic receptors by glucocorticoid hormones.
L J Hirsch, T Mazzone
We analyzed high molecular weight polysaccharide (PS) from the Fisher immunotype 2 (IT-2) strain of Pseudomonas aeruginosa for molecular composition and structure, then determined its immunogenicity in healthy adults. The PS was composed of 2-acetamido-2,6-dideoxygalactose (N-acetyl fucosamine) and glucose in a molar ratio of 2:1. Structural analysis by carbon-13 and proton nuclear magnetic resonance confirmed that the high molecular weight PS was structurally identical to that of the O-specific side chain of the lipopolysaccharide. PS differed from this material in molecular size. Immunization of 19 adult volunteers with doses of 50-100 micrograms of PS resulted in significant rises (P less than 0.04-P less than 0.0001) in binding antibody levels and killing antibody titers 2 and 4 wk postimmunization. The only reaction to the vaccine was localized tenderness at the immunization site. Analysis of the immunoglobulin isotype response to the vaccine showed a rise in specific serum IgG and IgA antibodies. Heterologous responses to other P. aeruginosa PS antigens were not seen. The antibody levels attained by vaccination were comparable with those in acute-phase serum samples of patients who survived sepsis with IT-2 P. aeruginosa and were significantly higher (P less than 0.03) than specific antibody levels in bacteremic patients who died. These results confirm that PS is a high molecular weight, immunogenic form of the P. aeruginosa IT-2 serotype antigen, eliciting levels of type-specific antibody comparable with those seen among patients surviving an episode of P. aeruginosa sepsis.
G B Pier, S E Bennett
The use of enzyme inhibitors to clarify the role of thromboxane A2 in vasoocclusive disease has been complicated by their non-specific action. To address this problem we have examined the effects of thromboxane A2/prostaglandin endoperoxide receptor antagonism in a canine model of platelet-dependent coronary occlusion. Two structurally distinct thromboxane A2/prostaglandin endoperoxide receptor antagonists, 3-carboxyl-dibenzo (b, f) thiepin-5,5-dioxide (L636,499) and (IS-(1 alpha,2 beta(5Z),3 beta,4 alpha))-7-(3-((2-((phenylamino)-carbonyl)hydrazino)methyl)-7- oxabicy-clo(2.2.1)-hept-2-yl)-5-heptenoic acid (SQ 29,548), were studied to ensure that the effects seen in vivo were mediated by receptor antagonism and did not reflect a nonspecific drug effect. Both compounds specifically inhibited platelet aggregation induced by arachidonic acid and by the prostaglandin endoperoxide analogue, U46619, in vitro and ex vivo, and increased the time to thrombotic vascular occlusion in vivo. When an antagonist (L636,499) was administered at the time of occlusion in vehicle-treated dogs, coronary blood flow was restored. In vitro L636,499 and a third antagonist, 13-azaprostanoic acid, specifically reversed endoperoxide-induced platelet aggregation and vascular smooth muscle contraction. Neither compound altered cyclic AMP in platelet-rich plasma before or during disaggregation. Therefore, reversal of coronary occlusion may reflect disaggregation of platelets and/or relaxation of vascular smooth muscle at the site of thrombus formation through specific antagonism of the thromboxane A2/prostaglandin endoperoxide receptor. Thromboxane A2/prostaglandin endoperoxide receptor antagonists are compounds with therapeutic potential which represent a novel approach to defining the importance of thromboxane A2 and/or endoperoxide formation in vivo.
D J Fitzgerald, J Doran, E Jackson, G A FitzGerald
To determine whether basal phosphoinositide turnover plays a role in metabolic regulation in resting rabbit aortic intima-media incubated under steady state conditions, we used deprivation of extracellular myo-inositol as a potential means of inhibiting basal phosphatidylinositol (PI) synthesis at restricted sites and of depleting small phosphoinositide pools with a rapid basal turnover. Medium myo-inositol in a normal plasma level was required to prevent inhibition of a specific component of basal de novo PI synthesis that is necessary to demonstrate a discrete rapidly turning-over [1,3-14C]glycerol-labeled PI pool. Medium myo-inositol was also required to label the discrete PI pool with [1-14C]arachidonic acid (AA). The rapid basal turnover of this PI pool, when labeled with glycerol or AA, was not attributable to its utilization for polyphosphoinositide formation, and it seems to reflect basal PI hydrolysis. Depleting endogenous free AA with medium defatted albumin selectively inhibits the component of basal de novo PI synthesis that replenishes the rapidly turning-over PI pool. A component of normal resting energy utilization in aortic intima-media also specifically requires medium myo-inositol in a normal plasma level and a free AA pool; its magnitude is unaltered by indomethacin, nordihydroguaiaretic acid, or Ca2+-free medium. This energy utilization results primarily from Na+/K+ ATPase activity (ouabain-inhibitable O2 consumption), and in Ca2+-free medium deprivation of medium myo-inositol or of free AA inhibits resting Na+/K+ ATPase activity to a similar degree (60%, 52%). In aortic intima-media basal PI turnover controls a major fraction of resting Na+/K+ ATPase activity.
D A Simmons, E F Kern, A I Winegrad, D B Martin
We have identified a non-insulin-dependent diabetic patient with fasting hyperinsulinemia (90 microU/ml), an elevated insulin:C-peptide molar ratio (1.68; normal, 0.05-0.20), normal insulin counterregulatory hormone levels, and an adequate response to exogenously administered insulin. Insulin-binding antibodies were absent from serum, erythrocyte insulin receptor binding was normal, and greater than 90% of circulating immunoreactive insulin coeluted with 125I-labeled insulin on gel filtration. The patient's insulin diluted in parallel with a human standard in the insulin radioimmunoassay, confirming close molecular similarity. The patient's insulin was purified from serum and shown to possess both reduced binding and ability to stimulate glucose uptake and oxidation in vitro. Analysis of the patient's insulin by high-performance liquid chromatography (HPLC) revealed two products: 7.3% of insulin immunoreactivity coeluted with the human standard, while the remaining 92.7% eluted as a single peak with increased hydrophobicity. Family studies confirmed the presence of hyperinsulinemia in four of five relatives in three generations, with secretion of an abnormal insulin documented by HPLC in the three tested. Leukocyte DNA was harvested from the propositus and the insulin gene cloned. One allele was normal, but the other displayed a thymine for guanine substitution at nucleotide position 1298 from the putative cap site, resulting in a leucine for valine substitution at position 3 of the insulin A chain. Insulin Wakayama is therefore identified as [LeuA3] insulin.
K Nanjo, T Sanke, M Miyano, K Okai, R Sowa, M Kondo, S Nishimura, K Iwo, K Miyamura, B D Given
Two patients (brother and sister, 41 and 39 yr of age, respectively) have been shown to have marked elevation of plasma triglycerides and chylomicrons, decreased low density lipoproteins (LDL) and high density lipoproteins (HDL), a type I lipoprotein phenotype, and a deficiency of plasma apolipoprotein C-II (apo C-II). The male patient had a history of recurrent bouts of abdominal pain often accompanied by eruptive xanthomas. The female subject, identified by family screening, was asymptomatic. Hepatosplenomegaly was present in both subjects. Analytical and zonal ultracentrifugation revealed a marked increase in triglyceride-rich lipoproteins including chylomicrons and very low density lipoproteins, a reduction in LDL, and the presence of virtually only the HDL3 subfraction. LDL were heterogeneous with the major subfraction of a higher hydrated density than that observed in plasma lipoproteins of normal subjects. Apo C-II levels, quantitated by radioimmunoassay, were 0.13 mg/dl and 0.12 mg/dl, in the male and female proband, respectively. A variant of apo C-II (apo C-IIPadova) with lower apparent molecular weight and more acidic isoelectric point was identified in both probands by two-dimensional gel electrophoresis. The marked hypertriglyceridemia and elevation of triglyceride-rich lipoproteins were corrected by the infusion of normal plasma or the injection of a biologically active synthesized 44-79 amino acid residue peptide fragment of apo C-II. The reduction in plasma triglycerides after the injection of the synthetic apo C-II peptide persisted for 13-20 d. These results definitively established that the dyslipoproteinemia in this syndrome is due to a deficiency of normal apo C-II. A possible therapeutic role for replacement therapy of apo C-II by synthetic or recombinant apo C-II in those patients with severe hypertriglyceridemia and recurrent pancreatitis may be possible in the future.
G Baggio, E Manzato, C Gabelli, R Fellin, S Martini, G B Enzi, F Verlato, M R Baiocchi, D L Sprecher, M L Kashyap
Alpha 1-antitrypsin (alpha 1AT), a 52,000-mol-wt serum glycoprotein produced by hepatocytes and mononuclear phagocytes, functions as the major inhibitor of neutrophil elastase. The alpha 1AT haplotype S is associated with childhood liver disease and/or adult emphysema when inherited with the Z haplotype to give the phenotype SZ. To accurately identify the SZ phenotype at the level of genomic DNA, four 32P-labeled 19-mer synthetic oligonucleotide probes were prepared; two to identify the M and S difference in exon III, and two to identify the M and Z difference in exon V. These probes were hybridized with various cloned DNAs and genomic DNAs cut with the restriction endonucleases BgII and EcoRI; the genomic DNAs represented all six possible phenotype combinations of the M, S, and Z haplotypes (MM, MS, MZ, SS, ZZ, and SZ). Using the four probes to evaluate 42 samples of genomic DNA, the "at risk" SZ and ZZ phenotypes were correctly identified in all cases, as were the "not at risk" phenotypes SS, MS, MM, and MZ, demonstrating that both exon III and exon V directed probes are necessary to properly identify all of the major "at risk" alpha 1AT genes. However, when used to evaluate a very rare family carrying a null allele, these four oligonucleotide probes misidentified the "at risk" null-null and S null phenotypes as "not at risk" MM and SM combinations. These observations indicate that oligonucleotide gene probes yielded reliable and accurate assessment of "at risk" alpha 1AT genotypes in almost all situations, but in the context of prenatal diagnosis and genetic counseling this approach must be used with caution and in combination with family studies so as not to misidentify rare genotypes that may be associated with a risk for disease.
T Nukiwa, M Brantly, R Garver, L Paul, M Courtney, J P LeCocq, R G Crystal
An inhibitor of ouabain-insensitive sodium/sodium exchange in erythrocytes has been isolated from leukemic promyelocytes. To explore the specific effects of this inhibitor, named inhibitin, sodium transport experiments were carried out in human erythrocytes. Inhibitin reduced ouabain-insensitive bidirectional sodium transport. It did not change net sodium fluxes, had no significant effect on rubidium influx, and did not inhibit sodium-potassium-ATPase activity. The inhibitory effect of inhibitin was studied on sodium/sodium exchange and on sodium/lithium countertransport in 140 mM sodium and in sodium-free media. In the presence of sodium, inhibitin reduced sodium and lithium efflux to that observed in sodium-free medium. Inhibitin showed no reduction in sodium or lithium efflux when sodium was replaced by choline chloride or Mg2+. When inhibitin was combined with one or more of the other transport inhibitors (i.e., ouabain, furosemide, or bumetanide and amiloride), its inhibitable component remained distinct and it did not overlap with that of the other inhibitors. These studies show that inhibitin is a specific inhibitor of carrier-mediated sodium/sodium exchange and sodium/lithium countertransport processes in human erythrocytes.
K Morgan, R C Brown, G Spurlock, K Southgate, M A Mir
The antitumor activity of cis-diamminedichloroplatinum II (cisplatin) is believed to be related to its covalent interaction with DNA where a major DNA binding product is an intrastrand N7-bidentate adduct on adjacent deoxyguanosines. A novel immunoassay was used to quantitate this adduct in buffy coat DNA from testicular and ovarian cancer patients undergoing cisplatin therapy. 44 out of 120 samples taken from 45 cisplatin patients had detectable cisplatin-DNA adducts. No adducts were detected in 18 samples of DNA taken from normal controls, patients on other chemotherapy, or patients before treatment. The quantity of measurable adducts increased as a function of cumulative dose of cisplatin. This was observed both during repeated daily infusion of the drug and over long-term, repeated 21-28 d cycles of administration. These results suggested that adduct removal is slow even though the tissue has a relatively rapid turnover. Patients receiving cisplatin for the first time on 56-d cycles, and those given high doses of cisplatin as a "salvage" regimen, did not accumulate adducts as rapidly as patients on first time chemotherapy on 21- or 28-d cycles. Disease response data, evaluated for 33 cisplatin-treated patients, showed a positive correlation between the formation of DNA adducts and response to drug therapy. However, more data will be required to confirm this relationship. These data show that specific immunological probes can readily be applied to quantitate DNA adducts in patients undergoing cancer chemotherapy.
E Reed, S H Yuspa, L A Zwelling, R F Ozols, M C Poirier
Increased energy intake activates the sympathetic nervous system (SNS) in animals and man. While dietary carbohydrate and fat stimulate, the impact of dietary protein on the SNS is not well defined. The present studies examine the effect of protein ingestion on sympathetic function based upon the measurement of [3H]norepinephrine (NE) turnover in heart and interscapular brown adipose tissue (IBAT) as the index of SNS activity. In these experiments, animals were pair-fed mixtures of laboratory chow and refined preparations of casein, sucrose, and lard to permit comparisons among nutrients with total energy intake held constant or with additional energy provided in the form of a single nutrient. After 5 d of eating a 2:1 mixture of chow and either casein or sucrose cardiac, [3H]NE turnover was less (P less than 0.005) in casein-fed rats (6.4%/h and 28.9 ng NE/h) than in animals given sucrose (11.2%/h and 46.5 ng NE/h). Similar results were obtained in IBAT and in experiments using 1:1 mixtures of chow and casein/sucrose. Casein-fed animals also displayed slower rates of NE turnover than lard-fed rats in both heart (7.8%/h vs. 13.2, P less than 0.001) and IBAT (7.0%/h vs. 12.8, P less than 0.01). Addition of casein (50% increase in energy intake) to a fixed chow ration raised NE turnover slightly, but not significantly, in heart (an average increase of 15% in six experiments). Thus, in distinction to SNS activation seen with dietary carbohydrate or fat, the SNS response to dietary protein is minimal in both heart and IBAT, indicating that the effect of increased energy intake on the SNS is dependent upon diet composition.
L N Kaufman, J B Young, L Landsberg
The metabolism of synthetic peptide analogues of high density lipoprotein (HDL) apoproteins has been studied in the rat. These compounds are 15-amino acid lipid associating peptides (LAPs) bearing acyl chains of various lengths (0-16 carbon units). After injection of each 125I-LAP, the serum decay curves suggested a two-compartment process with a clearance rate decreasing when the acyl chain lengths increased. The similarity between the apparent half-life of C16-LAP and that of apoprotein A-I as well as the chromatographic analysis of rat serum were consistent with a partitioning of the LAPs between HDL and the aqueous phase. This was strongly dependent upon the acyl chain length of the LAPs. The distribution volumes of the 125I-LAPs in organs were measured 10 min after injection. The results were analyzed using a model explicitly predicting the organ distribution volumes of HDL and the equilibrium constant (Keq) of the binding of each LAP to HDL. HDL distributed significantly in the adrenals (250 microliters/g), liver (80 microliters/g), and ovaries (55 microliters/g), but not in the kidneys. This suggests that the binding of HDL apoproteins to kidneys, reported by others, was due to the uptake of free apoproteins. The Keqs exhibited a log-linear relationship with respect to the acyl chain length of the LAPs. Each carbon unit added to the acyl chain decreased the free energy of association by a constant value (0.3 kcal mol-1). This clearly showed a strict hydrophobic effect similar to that previously observed in vitro.
G Ponsin, J T Sparrow, A M Gotto Jr, H J Pownall
Salla disease is a lysosomal storage disorder characterized by mental retardation and disturbed sialic acid metabolism. To study endogenous synthesis and breakdown of sialic acid, fibroblasts were incubated for 5 d in the presence and then in the absence of N-[3H]acetylmannosamine. Labeling of free sialic acid was 5-10 times higher in mutant than in normal cells. Radioactivity decreased in 4 d by 75% in normal but only by 30% in mutant fibroblasts. The labeling pattern was not normalized upon coculture of mutant and normal cells. To study the metabolism of extracellular sialic acid, low-density lipoprotein (LDL) was labeled in the sialic acid moiety (periodate-NaB3H4) or in the protein moiety (125I). Binding, internalization, lysosomal degradation, and exit of products of protein catabolism were similar in normal and mutant fibroblasts. Upon incubation with LDL labeled in the sialic acid moiety, mutant cells accumulated 2-3 times more free sialic acid radioactivity than normal fibroblasts, mostly in the lysosomal fraction. After a 24-h chase incubation, radioactivity in free sialic acid decreased by 70-80% in normal but only by 10-30% in mutant cells. In mutant fibroblasts, 40% of the radioactivity remained in lysosomes, whereas no labeled free sialic acid was detected in lysosomes from normal fibroblasts. We conclude that in Salla disease, fibroblast endogenous synthesis of sialic acid and lysosomal cleavage of exogenous glycoconjugates is normal, but free sialic acid cannot leave the lysosome. These findings suggest that the basic defect in Salla disease is deficient transport of free sialic acid through the lysosomal membrane.
M Renlund, P T Kovanen, K O Raivio, P Aula, C G Gahmberg, C Ehnholm
To determine the effect of fatty acid availability on leucine metabolism, 14-h fasted dogs were infused with either glycerol or triglyceride plus heparin, and 46-h fasted dogs were infused with either nicotinic acid or nicotinic acid plus triglyceride and heparin. Leucine metabolism was assessed using a simultaneous infusion of L-[4,5-3H]leucine and alpha-[1-14C]ketoisocaproate. Leucine, alpha-ketoisocaproate (KIC), and totalleucine carbon (leucine plus KIC) flux and oxidation rates were calculated at steady state. In 14-h fasted animals, infusion of triglyceride and heparin increased plasma free fatty acids (FFA) by 0.7 mM (P less than 0.01) and decreased leucine (P less than 0.01), total leucine carbon flux (P less than 0.02), and oxidation (P less than 0.05). The estimated rate of leucine utilization not accounted for by oxidation and KIC flux decreased, but the changes were not significant. During glycerol infusion, leucine and KIC flux and oxidation did not change. In 46-h fasted dogs, nicotinic acid decreased FFA by 1.0 mM (P less than 0.01) and increased (P less than 0.05) the rate of leucine and total leucine carbon flux, but did not affect KIC flux. Leucine oxidation increased (P less than 0.01) by nearly threefold, whereas nonoxidized leucine utilization decreased. Infusion of triglyceride plus heparin together with nicotinic acid blunted some of the responses observed with nicotinic acid alone. In that changes in oxidation under steady state condition reflect changes in net leucine balance, these data suggest that FFA availability may positively affect the sparing of at least one essential amino acid and may influence whole body protein metabolism.
P Tessari, S L Nissen, J M Miles, M W Haymond
Little is known about the hormonal regulation of luteinizing hormone (LH) biosynthesis. We have studied the regulation of LH messenger RNA (mRNA) levels by gonadal-steroid hormones in the rat. In one set of experiments, male and female rats were surgically gonadectomized (GDX) and killed 1, 3, 7, 14, 22, and 31 d postoperatively. In another set of experiments, male and female rats were surgically GDX and were injected subcutaneously with testosterone propionate (500 micrograms/100 g body wt per d) or 17 beta-estradiol 3-benzoate (10 micrograms/100 g body wt per d), respectively, beginning 3 wk postoperatively. Levels of serum LH were determined by radioimmunoassay and levels of LH subunit mRNAs in single pituitary glands were determined by blot hybridization analysis using labeled synthetic oligodeoxyribonucleotide probes that correspond to portions of the coding regions of the rat alpha- and LH beta-subunit mRNAs. 4 wk after gonadectomy, serum LH levels rose nine- and 20-fold, while alpha-subunit mRNA levels rose six- and 10-fold, and LH beta-subunit levels rose seven- and 14-fold, compared with controls in males and females, respectively. In gonadal-steroid hormone-treated male and female GDX rats, serum LH levels fell to 8 and 36% of control values, while alpha-subunit mRNA levels declined to 22 and 19%, and LH beta-subunit mRNA levels declined to 6 and 10% of control values, 48 h after injections were initiated, in males and females, respectively. We conclude that gonadal-steroid hormones negatively regulate the levels of both subunit mRNAs in GDX rats in a pattern that parallels the changes in serum LH values. These data suggest that gonadal-steroid hormone regulation of LH biosynthesis occurs, at least in part, at the level of LH subunit mRNAs due to effects at the transcriptional and/or RNA stability levels.
S D Gharib, S M Bowers, L R Need, W W Chin
We have measured the excretion of a major urinary metabolite of thromboxane B2 (TxB2), i.e., 2,3-dinor-TxB2, during the infusion of exogenous TxB2 over a 50-fold dose range to enable estimation of the rate entry of endogenous TxB2 into the bloodstream. Four healthy male volunteers received 6-h i.v. infusions of venhicle alone and TxB2 at 0.1, 1.0, and 5.0 ng/kg X min in random order. They were pretreated with aspirin at a dose of 325 mg/d in order to suppress endogenous TxB2 production. Urinary 2,3-dinor-TxB2 was measured before, during, and up to 24 h after the infusions and in aspirin-free periods, by means of radioimmunoassay. The nature of the extracted immunoreactivity was characterized by thin-layer chromatography and confirmed by negative ion-chemical ionization gas chromatography/mass spectrometry. Aspirin treatment suppressed urinary 2,3-dinor-TxB2 excretion by 80%. The fractional elimination of 2,3-dinor-TxB2 was independent of the rate of TxB2 infusion and averaged 5.3 +/- 0.8%. Interpolation of metabolite values obtained in aspirin-free periods onto the linear relationship between the quantities of infused TxB2 and the amount of metabolite excreted in excess of control values (y = 0.0066x, r = 0.975, P less than 0.001) permitted calculation of the mean rate of entry of endogenous TxB2 into the circulation as 0.11 ng/kg X min. The rate of disappearance of immunoreactive TxB2 from the circulation was monoexponential over the first 10 min with an apparent half-life of 7 min. This corresponded to a maximal estimate of the plasma concentration of endogenous TxB2 of 2.0 pg/ml. These results suggest that ex vivo platelet activation and/or analytical problems confound estimates of endogenous thromboxane release based on plasma TxB2 and provide a rationale for seeking longer-lived enzymatic metabolites of TxB2 in plasma.
C Patrono, G Ciabattoni, F Pugliese, A Pierucci, I A Blair, G A FitzGerald
We have isolated an isoform of the protein activator of lipoprotein lipase, apolipoprotein C-II, from the very low density lipoproteins of four patients of African ancestry with hypertriglyceridemia and eruptive or pedunculated xanthomata. This protein, which we designate apolipoprotein C-II2, differs from the previously recognized species, which we denote apolipoprotein C-II1, by substitution of glutamine for lysine at residue 55, a mutation which would require only a single-base substitution in the structural gene for apolipoprotein C-II1. Each of the patients in whom apolipoprotein C-II2 was found had approximately equal amounts of apolipoprotein C-II1 and apolipoprotein C-II2 among the apoproteins of the very low density lipoproteins, suggesting that the structural genes for these proteins are allelic. Two additional apparent heterozygotes were found among the first-degree relatives of each of two of the patients in patterns compatible with monogenic autosomal transmission. Approximately equal amounts of apolipoproteins C-II2 and C-II1 were also found by isoelectric focusing in 6 of a casual series of 50 normolipidemic blacks, but none or only trace amounts of apolipoprotein C-II2 were found in 500 samples from Caucasian subjects with hyperlipidemia. These findings suggest that this polymorphism is distributed primarily among blacks, possibly reflecting some positive Darwinian selection pressure. Whether this polymorphism has a modifying effect upon the development of hyperlipemia remains to be determined.
H J Menzel, J P Kane, M J Malloy, R J Havel
The relative contributions of type I and type II insulinlike growth factor (IGF) receptors and IGF carrier proteins to the binding of IGF-I tracer to cultured human fibroblasts were determined in competitive binding experiments that used unlabeled insulin and synthetic insulin-IGF-I hybrid molecules containing the A chain of insulin and the B domain of IGF-I. Whereas insulin binds only to type I IGF receptors, the B-IGF-I hybrids bind to type I receptors and IGF carrier proteins but not to type II receptors. In suspended human fibroblasts, IGF-I tracer binds predominantly to type I IGF receptors (inhibition by IGF-I much greater than insulin greater than B-IGF-I hybrid molecules). By contrast, in fibroblast monolayers, IGF-I binding was minimally inhibited by insulin or hybrid molecules, suggesting predominant binding to the type II IGF receptor. The type I receptor appears to be masked on fibroblast monolayers, and to require suspension or detergent solubilization of the cells to be demonstrated. In the course of the monolayers binding experiments, we noted that low concentrations of unlabeled IGF-I (5-10 ng/ml) or B-IGF-I hybrids (100 ng/ml) paradoxically increased IGF-I tracer binding up to twofold. We postulated that during the binding incubation (5 h, 15 degrees C), IGF-I tracer partitioned between binding sites on the cell surface and IGF carrier proteins released to the incubation media. Preferential occupancy of binding sites in the media by unlabeled ligand increased the tracer available to bind to the cells. In support of this hypothesis, carrier proteins were demonstrated in the media at the end of the binding incubation with fibroblast monolayers, and the concentration of unsaturated binding sites in the media correlated inversely with tracer binding to the cells. Thus carrier proteins released to the media during the binding incubation modulate the binding of IGF-I tracer to cell receptors, suggesting that the carrier proteins may play an important role in regulating cellular responsiveness to the IGFs.
M A De Vroede, L Y Tseng, P G Katsoyannis, S P Nissley, M M Rechler
Metabolic acidosis is associated with enhanced renal ammonia-genesis which is regulated, in part, by glucocorticoids. The interaction between glucocorticoids and chronic metabolic acidosis on nitrogen utilization and muscle protein metabolism is unknown. In rats pair-fed by gavage, we found that chronic acidosis stunted growth and caused a 43% increase in urinary nitrogen and an 87% increase in urinary corticosterone. Net protein degradation in incubated epitrochlearis muscles from chronically acidotic rats was stimulated at all concentrations of insulin from 0 to 10(4) microU/ml. This effect of acidosis persisted despite supplementation of the media with amino acids with or without insulin, indomethacin, and inhibitors of lysosomal thiol cathepsins. Acidosis did not change protein synthesis; hence, the increase in net protein degradation was caused by stimulation of proteolysis. Acidosis did not increase glutamine production in muscle. The protein catabolic effect of acidosis required glucocorticoids; protein degradation was stimulated in muscle of acidotic, adrenalectomized rats only if they were treated with dexamethasone. Moreover, when nonacidotic animals were given 3 micrograms/100 g of body weight dexamethasone twice a day, muscle protein degradation was increased if the muscles were simply incubated in acidified media. We conclude that chronic metabolic acidosis depresses nitrogen utilization and increases glucocorticoid production. The combination of increased glucocorticoids and acidosis stimulates muscle proteolysis but does not affect protein synthesis. These changes in muscle protein metabolism may play a role in the defense against acidosis by providing amino acid nitrogen to support the glutamine production necessary for renal ammoniagenesis.
R C May, R A Kelly, W E Mitch
Formula diets containing lard or lard and egg yolks were fed to six normolipidemic volunteers to investigate subsequent changes in the composition of lipoproteins of d less than 1.006 g/ml and in their ability to bind and be taken up by receptors on mouse macrophages. Both formulas induced the formation of d less than 1.006 lipoproteins that were approximately 3.5-fold more active than fasting very low density lipoproteins (VLDL) in binding to the receptor for beta-VLDL on macrophages. Subfractionation of postprandial d less than 1.006 lipoproteins by agarose chromatography yielded two subfractions, fraction I (chylomicron remnants) and fraction II (hepatic VLDL remnants), which bound to receptors on macrophages. However, fraction I lipoproteins induced a 4.6-fold greater increase in macrophage triglyceride content than fraction II lipoproteins or fasting VLDL. Fraction I lipoproteins were enriched in apolipoproteins (apo) B48, E, and [a]. Fraction II lipoproteins lacked apo[a] but possessed apo B100 and apo E. The apo[a] was absent in normal fasting VLDL, but was present in the d less than 1.006 lipoproteins (beta-VLDL) of fasting individuals with type III hyperlipoproteinemia. The apo[a] from postprandial d less than 1.006 lipoproteins was larger than either of two apo[a] subspecies obtained from lipoprotein (a) [Lp(a)] isolated at d = 1.05-1.09. However, all three apo[a] subspecies were immunochemically identical and had similar amino acid compositions: all were enriched in proline and contained relatively little lysine, phenylalanine, isoleucine, or leucine. The association of apo[a] with dietary fat-induced fraction I lipoproteins suggests that the previously observed correlation between plasma Lp(a) concentrations and premature atherosclerosis may be mediated, in part, by the effect of apo[a] on chylomicron remnant metabolism.
T P Bersot, T L Innerarity, R E Pitas, S C Rall Jr, K H Weisgraber, R W Mahley
Alpha-1-antitrypsin-Pittsburgh is a human variant that resulted from a point mutation in the plasma protease inhibitor, alpha 1-antitrypsin (358 Met----Arg). This defect in the alpha 1-antitrypsin molecule causes it to have greatly diminished anti-elastase activity but markedly increased antithrombin activity. In this report, we demonstrate that this variant protein also has greatly increased inhibitory activity towards the arginine-specific enzymes of the contact system of plasma proteolysis (Factor XIa, kallikrein, and Factor XIIf), in contrast to normal alpha 1-antitrypsin, which has modest to no inhibitory activity towards these enzymes. We determined the second-order-inactivation rate constant (k'') of purified, human Factor XIa by purified alpha 1-antitrypsin-Pittsburgh and found it to be 5.1 X 10(5) M-1 s-1 (23 degrees C), which is a 7,700-fold increase over the k'' for Factor XIa by its major inhibitor, normal purified alpha 1-antitrypsin (i.e., 6.6 X 10(1) M-1 s-1). Human plasma kallikrein, which is poorly inhibited by alpha 1-antitrypsin (k'' = 4.2 M-1 s-1), exhibited a k'' for alpha 1-antitrypsin-Pittsburgh of 8.9 X 10(4) M-1 s-1 (a 21,000-fold increase), making it a more efficient inhibitor than either of the naturally occurring major inhibitors of kallikrein (C-1-inhibitor and alpha 2-macroglobulin). Factor XIIf, which is not inhibited by normal alpha 1-antitrypsin, displayed a k'' for alpha 1-antitrypsin-Pittsburgh of 2.5 X 10(4) M-1 s-1. This enhanced inhibitory activity is similar to the effect of alpha 1-antitrypsin-Pittsburgh that has been reported for thrombin. In addition to its potential as an anticoagulant, this recently cloned protein may prove to be clinically valuable in the management of septic shock, hereditary angioedema, or other syndromes involving activation of the surface-mediated plasma proteolytic system.
C F Scott, R W Carrell, C B Glaser, F Kueppers, J H Lewis, R W Colman
In normal plasma, the serine protease inhibitor alpha 1-antitrypsin (alpha 1-AT) plays little or no role in the control of plasma kallikrein or activated Factor XII fragment (Factor XIIf), this function being performed by Cl-inhibitor. Recently, an alpha 1-AT variant was described with a Met----Arg mutation at the reactive center P1 residue (position 358) which altered the specificity of inhibition from the Met- or Val-specific protease neutrophil elastase to thrombin, an Arg-specific protease. We have now examined the inhibition of plasma kallikrein and Factor XIIf, both Arg-specific enzymes, with recombinant alpha 1-AT(Met358----Arg) produced by an Escherichia coli strain carrying a mutated human alpha 1-AT gene. The engineered protein was a very efficient inhibitor of both enzymes. It was more effective than Cl-inhibitor by a factor of 4.1 for kallikrein and 11.5 for Factor XIIf. These results suggest that recombinant alpha 1-AT(Met358----Arg) has therapeutic potential for disease states where activation of the plasma kinin-forming system is observed, for example in hereditary angioedema or septic shock.
M Schapira, M A Ramus, S Jallat, D Carvallo, M Courtney
Theophylline enhances the force of diaphragmatic contraction and delays fatigue. The mechanism is not known, but recent evidence suggests it may act at the cell membrane. To test this hypothesis, we studied the effect of theophylline on resting membrane potential and tension in hamster diaphragm cells. Muscle strips were obtained from five adult hamsters and placed in Krebs solution, aerated with 95% O2, 5% CO2. Resting membrane potential was measured using 3-M KCl-filled glass microelectrodes; 15-22 fibers in each strip were sampled. Force frequency curves (twitch to 100 Hz) were obtained. The muscle bath was then changed to one containing 100 mg/liter (0.55) theophylline. Resting membrane potential was -76 +/- 3 mV (mean +/- S.D.) in Krebs solution and increased to -85 +/- 3 mV (P less than 0.01) with added theophylline. Tension increased from 5% (at 100 Hz) to 20% (at 10 Hz) with theophylline. Hyperpolarization indicates an increase in intracellular to extracellular potassium concentration. Net potassium outflow occurs with each contraction, causing the cell membrane to become depolarized with repeated contractions, ultimately leading to fatigue. The hyperpolarization of the skeletal muscle cell membrane observed with theophylline may play an important role in prolonging time to fatigue.
S Esau
Previous studies have established that low density lipoprotein (LDL) incubated with endothelial cells (EC) undergoes extensive oxidative modification in structure and that the modified LDL is specifically recognized by the acetyl LDL receptor of the macrophage. Thus, in principle, EC-modified LDL could contribute to foam cell formation during atherogenesis. Oxidatively modified LDL is also potentially toxic to EC. The present studies show that addition of probucol during the incubation of LDL with EC prevents the increase in the electrophoretic mobility, the increase in peroxides, and the increase in subsequent susceptibility to macrophage degradation. It has also been shown that oxidation of LDL catalyzed by cupric ion induces many of the same changes occurring during EC modification. Addition of probucol (5 microM) also prevented this copper-catalyzed modification of LDL. Most importantly, samples of LDL isolated from plasma of hypercholesterolemic patients under treatment with conventional dosages of probucol were shown to be highly resistant to oxidative modification either by incubation with endothelial cells or by cupric ion in the absence of cells. The findings suggest the hypothetical but intriguing possibility that probucol, in addition to its recognized effects on plasma LDL levels, may inhibit atherogenesis by limiting oxidative LDL modification and thus foam cell formation and/or EC injury. Other compounds with antioxidant properties might behave similarly.
S Parthasarathy, S G Young, J L Witztum, R C Pittman, D Steinberg
The pathogenesis and progression of rheumatoid arthritis involves the production of biologically active lymphokines and monokines. Of these, interleukin 1 (IL-1) has been somewhat of a controversial molecule because it seems to evoke various biological responses in several different tissues. In these studies we demonstrate that three biological properties of human monocyte-derived IL-1 (T-lymphocyte activation and human synovial cell prostaglandin E2 and collagenase production) co-purify. The complementary DNA for the prominent pI 7 form of human IL-1 was expressed, purified, and tested. Any controversy now appears resolved since homogeneous recombinant human IL-1 stimulates prostaglandin E2 and collagenase from human synovial cells as well as activates T cells in vitro.
J M Dayer, B de Rochemonteix, B Burrus, S Demczuk, C A Dinarello
A molecular linkage analysis in 11 families with X-linked agammaglobulinemia (XLA) localized the XLA gene to the proximal part of the long arm of the human X chromosome. Significant linkage was detected between XLA and loci defined by two polymorphic DNA probes called 19-2 for the DXS3 locus and S21 for the DXS17 locus. Both localize to the region Xq21.3-Xq22. Most likely recombination distances (theta) and associated logarithm of the odds (lod) scores for the XLA-DXS3 and XLA-DXS17 pairs were theta = 0.04 morgans (lod, 3.65) and theta = 0 (lod, 2.17), respectively. Tight linkage between XLA and the locus DXS43 defined by the X short arm probe D2 (localized to Xp22-Xp21) was strongly excluded and we obtained no evidence for significant linkage between XLA and any other X short arm probe. The probe pair 19-2 and S21 should be informative for molecular linkage-based analysis of XLA segregation in the majority of families afflicted with this disorder.
S P Kwan, L Kunkel, G Bruns, R J Wedgwood, S Latt, F S Rosen