Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112325

Effect of acute hypercapnia on renal and proximal tubular total carbon dioxide reabsorption in the acetazolamide-treated rat.

J Winaver, K A Walker, and R T Kunau Jr

Find articles by Winaver, J. in: JCI | PubMed | Google Scholar

Find articles by Walker, K. in: JCI | PubMed | Google Scholar

Find articles by Kunau, R. in: JCI | PubMed | Google Scholar

Published February 1, 1986 - More info

Published in Volume 77, Issue 2 on February 1, 1986
J Clin Invest. 1986;77(2):465–473. https://doi.org/10.1172/JCI112325.
© 1986 The American Society for Clinical Investigation
Published February 1, 1986 - Version history
View PDF
Abstract

The present study evaluates the effect of acute hypercapnia on renal total CO2 (tCO2) reabsorption after inhibition of renal carbonic anhydrase. Simultaneous renal clearance studies and free-flow micropuncture studies of the superficial proximal tubule were performed on plasma-repleted Sprague-Dawley rats treated with acetazolamide, 50 mg/kg body weight. Acute hypercapnia (arterial PCO2, 120 mmHg; blood pH, 7.02) was induced by ventilation with a 10% CO2-90% O2 gas mixture. Control rats (PCO2, 49.5 mmHg, pH 7.34) were ventilated with room air. The renal fractional excretion of tCO2 was approximately 20% lower in the hypercapnic group compared with the rats given acetazolamide alone. Acute hypercapnia reduced the fractional delivery of tCO2 to the late proximal tubule by a comparable amount. The absolute proximal reabsorption of tCO2 was increased by hypercapnia to 410 +/- 47 vs. 170 +/- 74 pmol X min-1, P less than 0.05. The single nephron glomerular filtration rate was 32.6 +/- 0.7 nl X min-1 in the hypercapnic group and 43.8 +/- 1.7 nl X min-1 in the rats given acetazolamide only, P less than 0.01. Acute hypercapnia enhances renal sympathetic nerve activity. To eliminate this effect, additional experiments were performed in which the experimental kidney was denervated before study. Denervation prevented the change in the single nephron filtration rate during acute hypercapnia, but absolute and fractional proximal tCO2 reabsorption remained elevated in comparison to denervated controls. The concentration of H2CO3 in the late proximal tubule, calculated from the measured luminal pH and bicarbonate concentration and the estimated cortical PCO2, was higher in the hypercapnic group, which was a finding compatible with H2CO3 cycling from lumen into proximal tubular cell, which provided a source of hydrogen ions for secretion.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 465
page 465
icon of scanned page 466
page 466
icon of scanned page 467
page 467
icon of scanned page 468
page 468
icon of scanned page 469
page 469
icon of scanned page 470
page 470
icon of scanned page 471
page 471
icon of scanned page 472
page 472
icon of scanned page 473
page 473
Version history
  • Version 1 (February 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts