Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (173)

Advertisement

Research Article Free access | 10.1172/JCI112341

Estimated rate of thromboxane secretion into the circulation of normal humans.

C Patrono, G Ciabattoni, F Pugliese, A Pierucci, I A Blair, and G A FitzGerald

Find articles by Patrono, C. in: JCI | PubMed | Google Scholar

Find articles by Ciabattoni, G. in: JCI | PubMed | Google Scholar

Find articles by Pugliese, F. in: JCI | PubMed | Google Scholar

Find articles by Pierucci, A. in: JCI | PubMed | Google Scholar

Find articles by Blair, I. in: JCI | PubMed | Google Scholar

Find articles by FitzGerald, G. in: JCI | PubMed | Google Scholar

Published February 1, 1986 - More info

Published in Volume 77, Issue 2 on February 1, 1986
J Clin Invest. 1986;77(2):590–594. https://doi.org/10.1172/JCI112341.
© 1986 The American Society for Clinical Investigation
Published February 1, 1986 - Version history
View PDF
Abstract

We have measured the excretion of a major urinary metabolite of thromboxane B2 (TxB2), i.e., 2,3-dinor-TxB2, during the infusion of exogenous TxB2 over a 50-fold dose range to enable estimation of the rate entry of endogenous TxB2 into the bloodstream. Four healthy male volunteers received 6-h i.v. infusions of venhicle alone and TxB2 at 0.1, 1.0, and 5.0 ng/kg X min in random order. They were pretreated with aspirin at a dose of 325 mg/d in order to suppress endogenous TxB2 production. Urinary 2,3-dinor-TxB2 was measured before, during, and up to 24 h after the infusions and in aspirin-free periods, by means of radioimmunoassay. The nature of the extracted immunoreactivity was characterized by thin-layer chromatography and confirmed by negative ion-chemical ionization gas chromatography/mass spectrometry. Aspirin treatment suppressed urinary 2,3-dinor-TxB2 excretion by 80%. The fractional elimination of 2,3-dinor-TxB2 was independent of the rate of TxB2 infusion and averaged 5.3 +/- 0.8%. Interpolation of metabolite values obtained in aspirin-free periods onto the linear relationship between the quantities of infused TxB2 and the amount of metabolite excreted in excess of control values (y = 0.0066x, r = 0.975, P less than 0.001) permitted calculation of the mean rate of entry of endogenous TxB2 into the circulation as 0.11 ng/kg X min. The rate of disappearance of immunoreactive TxB2 from the circulation was monoexponential over the first 10 min with an apparent half-life of 7 min. This corresponded to a maximal estimate of the plasma concentration of endogenous TxB2 of 2.0 pg/ml. These results suggest that ex vivo platelet activation and/or analytical problems confound estimates of endogenous thromboxane release based on plasma TxB2 and provide a rationale for seeking longer-lived enzymatic metabolites of TxB2 in plasma.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 590
page 590
icon of scanned page 591
page 591
icon of scanned page 592
page 592
icon of scanned page 593
page 593
icon of scanned page 594
page 594
Version history
  • Version 1 (February 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (173)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts