Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Effect of protein on sympathetic nervous system activity in the rat. Evidence for nutrient-specific responses.
L N Kaufman, … , J B Young, L Landsberg
L N Kaufman, … , J B Young, L Landsberg
Published February 1, 1986
Citation Information: J Clin Invest. 1986;77(2):551-558. https://doi.org/10.1172/JCI112336.
View: Text | PDF
Research Article

Effect of protein on sympathetic nervous system activity in the rat. Evidence for nutrient-specific responses.

  • Text
  • PDF
Abstract

Increased energy intake activates the sympathetic nervous system (SNS) in animals and man. While dietary carbohydrate and fat stimulate, the impact of dietary protein on the SNS is not well defined. The present studies examine the effect of protein ingestion on sympathetic function based upon the measurement of [3H]norepinephrine (NE) turnover in heart and interscapular brown adipose tissue (IBAT) as the index of SNS activity. In these experiments, animals were pair-fed mixtures of laboratory chow and refined preparations of casein, sucrose, and lard to permit comparisons among nutrients with total energy intake held constant or with additional energy provided in the form of a single nutrient. After 5 d of eating a 2:1 mixture of chow and either casein or sucrose cardiac, [3H]NE turnover was less (P less than 0.005) in casein-fed rats (6.4%/h and 28.9 ng NE/h) than in animals given sucrose (11.2%/h and 46.5 ng NE/h). Similar results were obtained in IBAT and in experiments using 1:1 mixtures of chow and casein/sucrose. Casein-fed animals also displayed slower rates of NE turnover than lard-fed rats in both heart (7.8%/h vs. 13.2, P less than 0.001) and IBAT (7.0%/h vs. 12.8, P less than 0.01). Addition of casein (50% increase in energy intake) to a fixed chow ration raised NE turnover slightly, but not significantly, in heart (an average increase of 15% in six experiments). Thus, in distinction to SNS activation seen with dietary carbohydrate or fat, the SNS response to dietary protein is minimal in both heart and IBAT, indicating that the effect of increased energy intake on the SNS is dependent upon diet composition.

Authors

L N Kaufman, J B Young, L Landsberg

×

Full Text PDF

Download PDF (1.30 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts