Abnormal T cell function is a feature of a spectrum of inherited and acquired diseases. We have detected a frequent restriction fragment length polymorphism in the human T cell antigen receptor beta-chain locus that may aid in the analysis of these disorders. A study of a panel of 18 normal individuals, testing for the presence of the polymorphism, showed it to account for 36% of the alleles in that group. In view of the fact that the T cell receptor beta-chain locus has been mapped to chromosome 7, and that the disease ataxia telangiectasia (AT) is associated both with abnormal T cell function and with chromosomal abnormalities of the same region of chromosome 7, we investigated the possibility that the polymorphism could demonstrate linkage of the T cell receptor locus to the gene for that disease. We demonstrated that the mutation causing AT did not lie within the beta-chain locus itself, and that there was preliminary evidence that the two loci were not closely linked. This polymorphism may provide a useful tool for the study of other genetic disorders associated with abnormalities of T cell function, as well as disorders associated with inherited or acquired abnormalities of chromosome 7.
N Berliner, A D Duby, C C Morton, P Leder, J G Seidman
To facilitate the direct study of progenitor cell biology, we have developed a simple and efficient procedure based upon negative selection by panning to purify large numbers of committed erythroid and myeloid progenitors from human fetal liver. The nonadherent, panned cells constitute a highly enriched population of progenitor cells, containing 30.4 +/- 13.1% erythrocyte burst forming units (BFU-E), 5.5 +/- 1.9% granulocyte-macrophage colony forming units (CFU-GM), and 1.4 +/- 0.7% granulocyte-erythroid-macrophage-megakaryocyte colony forming units (CFU-GEMM) as assayed in methylcellulose cultures. These cells are morphologically immature blasts with prominent Golgi. This preparative method recovers 60-100% of the committed progenitors detectable in unfractionated fetal liver and yields 2-30 X 10(6) progenitors from each fetal liver sample, and thus provides sufficient numbers of enriched progenitors to allow direct biochemical and immunologic manipulation. Using this technique, a purified recombinant protein previously thought to have only granulocyte-macrophage colony stimulating activity (GM-CSA) is shown to have both burst promoting activity and multipotential colony stimulating activity. Progenitor purification by panning thus appears to be a simple, efficient method that should facilitate the direct study of committed hematopoietic progenitors and their differentiation.
S G Emerson, C A Sieff, E A Wang, G G Wong, S C Clark, D G Nathan
B A Chabner, C J Allegra, G A Curt, N J Clendeninn, J Baram, S Koizumi, J C Drake, J Jolivet
Expression of the transferrin receptor on target cell lines has recently been implicated as a determinant of susceptibility to cytolysis by natural killer (NK) lymphocytes. We have examined this proposed relationship in several ways. First, K562 (a cell line highly vulnerable to NK lysis) cells were grown for 24 h in the iron chelator desferrioxamine. Under these conditions, the cells doubled their surface transferrin receptor expression as determined both by radioligand binding and surface binding of the OK-T9 monoclonal anti-transferrin receptor antibody. In contrast, cells grown for the same period of time in hemin halved their receptor expression. This fourfold change in transferrin receptor expression between the desferrioxamine-treated and hemin-treated cells produced no change in susceptibility to NK cytolysis. Second, HeLa (a cell line which in its native state is very resistant to NK cytolysis) cells were compared with K562 cells with respect to surface transferrin receptor expression. The difference in NK susceptibility of the two cell lines was not reflected in differences in transferrin receptor expression: the K562 cells expressed approximately 1.5 X 10(5) receptors per cell while HeLa cells expressed 2.0 X 10(5) receptors/cell. Third, infection of HeLa cells by measles virus greatly increased their susceptibility to NK lysis but produced no change in surface transferrin receptor expression. Furthermore, when measles-infected HeLa cells were grown for 6 d in medium supplemented with iron-saturated human transferrin they underwent a 50% reduction in receptor expression but no change in NK susceptibility. Finally, possible alterations in the surface expression of NK target antigens on modified cells were further assayed by their ability to serve as cold-target inhibitors of cytolysis of NK-sensitive target cells. We examined two groups of cells in which transferrin receptor expression was reduced. These were the transferrin-treated, measles-infected HeLa cells with the 50% receptor reduction, and K562 cells grown in medium containing hemin and iron salts where the reduction was five- to sixfold relative to control. In neither case was there a change in the apparent expression of NK target antigen(s). We conclude that there is a discordance between transferrin receptor expression and susceptibility to NK cytolysis in the model systems examined. Therefore, it is unlikely that the transferrin receptor per se is the target recognition structure for human NK cells, although a role in concert with other, as yet undefined molecules, cannot be excluded.
K R Bridges, B R Smith
The metabolic and systemic effects of dichloroacetate (DCA) in the treatment of hypoxic lactic acidosis were evaluated in the dog and compared with the infusion of equal quantities of volume and sodium. Hypoxic lactic acidosis was induced by ventilating dogs with an hypoxic gas mixture of 8% oxygen and 92% nitrogen, resulting in arterial PO2 of less than 30 mmHg, pH below 7.20, bicarbonate less than 15 mM, and lactate greater than 7 mM. After, the development of hypoxic lactic acidosis dogs were treated for 60 min with either DCA as sodium salt or NaCl at equal infusions of volume and sodium. Dogs treated with DCA showed a significant increase of arterial blood pH and bicarbonate, and steady levels of lactate, whereas NaCl resulted in further declines of blood pH and bicarbonate, and rising blood lactate levels. Overall lactate production decreased during therapy with either regimen, but hepatic lactate extraction increased significantly with DCA, while it remained unchanged with NaCl. Tissue lactate levels in liver and skeletal muscle decreased significantly with DCA treatment but were unchanged with NaCl. Additionally, an increase in muscle intracellular pH was observed only in DCA treated dogs. A possible mechanism for the observed actions of DCA might be related to a significant increase in oxygen delivery to tissues. Such an effect was found with DCA administration, but was not observed with NaCl therapy. In conclusion, DCA therapy in hypoxic lactic acidosis has beneficial systemic effects compared with therapy with NaCl. DCA administration is accompanied by increases of blood pH and bicarbonate, a decrease in lactate production, and enhanced liver lactate extraction, and a lowering of tissue lactate levels.
H Graf, W Leach, A I Arieff
Glucocorticosteroid therapy results in an increase in the number of circulating neutrophils and a decrease in the number of eosinophils. Utilizing the double layer soft agar technique, we examined the effect of physiologic to pharmacologic concentrations of hydrocortisone on the proliferation of human neutrophil progenitors and eosinophil progenitors from peripheral blood and bone marrow. When peripheral blood cultures were studied, eosinophil proliferation was inhibited in a dose-responsive fashion with 10(-8) - 10(-5) M hydrocortisone succinate, and comprised 49 +/- 4% of the colonies in control cultures and only 4 +/- 1% (P less than 0.01) at pharmacologic levels of hydrocortisone (10(-5) M). The number of neutrophil colonies, on the other hand, increased by 31% when 10(-5) M hydrocortisone was added to cultures. In order for corticosteroids to exert this effect, it was necessary to add them within 24 h of the initiation of culture. The effect of hydrocortisone on granulocyte proliferation could not be blocked by progesterone, a structurally analogous steroid. To determine whether hydrocortisone was acting directly on the progenitor cell or via an effector cell, its effect on modulating cell populations and stimulating-factor production was studied. Removal of E-rosetting cells and/or adherent cells did not affect the inhibition of eosinophil colony growth or the enhancement of neutrophil colony growth. Furthermore, addition of the potent inhibitor of T cell function, cyclosporin A, failed to affect eosinophil colony frequency, suggesting that inhibition of T cell function was an unlikely explanation for the observed hydrocortisone effect. Leukocyte conditioned media (LCM), derived from peripheral blood mononuclear cells incubated with hydrocortisone, was devoid of both neutrophil and eosinophil colony-stimulating activity, whereas a control LCM stimulated both neutrophil and eosinophil proliferation. The data suggest that the observed hydrocortisone effect on granulocyte colony formation is unlikely to be mediated by an intermediary, and that hydrocortisone acts directly on progenitor cells.
B H Bjornson, J M Harvey, L Rose
The protective effect of dietary protein restriction on the development and expression of immune-mediated interstitial nephritis was evaluated in Brown Norway rats with anti-tubular basement membrane disease. In the first series of experiments, pair-fed rats received low protein (LP) (3% casein) or normal protein (NP) (27% casein), normocaloric diets. After 6 wk, each group was immunized with renal tubular antigen in adjuvant to produce anti-tubular basement membrane antibody (alpha TBM-Ab) and tubulointerstitial nephritis. The kidneys harvested from NP rats after four more weeks on the diet had histologically more severe interstitial disease than the LP rats (histologic severity; NP = 3.1 +/- 0.2 vs. LP = 1.1 +/- 0.3; P less than 0.001), and serum creatinine values were concordantly different (NP = 1.34 +/- 0.02 vs. LP = 0.82 +/- 0.03). Titers of alpha TBM-Ab were similar in both groups, while the T cell-mediated immune response, as measured by delayed-type hypersensitivity (DTH), was nonspecifically impaired in LP rats when compared with the NP group. Admixture cotransfers of LP plus NP cells failed to demonstrate active suppression as an explanation for the depressed DTH in LP rats. The therapeutic role of dietary protein restriction was also examined in rats with established alpha TBM disease. In these experiments, rats were first immunized and fed NP diets for 4 wk (histologic severity = 3.0 +/- 0.2; creatinine = 1.78 +/- 0.02), and then were divided into two groups and followed for six more weeks on either LP or NP diets. LP rats, under these conditions, developed less disease than those fed NP diet (histologic severity; NP = 3.2 +/- 0.3 vs. LP = 1.4 +/- 0.2; P less than 0.001), and serum creatinine values were concordantly different (NP = 1.92 +/- 0.05 vs. LP = 0.97 +/- 0.02). Again, the titers of alpha TBM-Ab in both LP and NP groups were similar. These data collectively suggest that LP diet has a protective effect both on the development and extent of tubulointerstitial nephritis that is perhaps, in part, related to the selective abrogation of effector T cell immunity.
D Agus, R Mann, D Cohn, L Michaud, C Kelly, M Clayman, E G Neilson
Several murine monoclonal anti-human Factor VII antibodies were produced using hybridoma technology. Two noncompetitive monoclonal antibodies were used to examine by Western blotting the Factor VII cross-reactive material (CRM) in normal human plasma and three commercially available congenitally Factor VII-deficient plasmas, and to construct a facile "sandwich" immunoassay for plasma Factor VII. A second, previously undescribed, form of Factor VII CRM was detected in human plasma, which on Western blotting stained with an apparent intensity 5-8% that of Factor VII. This glycoprotein, tentatively called VII*, has a molecular weight 4,500 D less than Factor VII, lacks detectable Factor VII functional activity, does not bind to barium citrate, and is not recognized by a monoclonal antibody that recognizes Factor VII but not alpha-chymotrypsin-treated Factor VII. VII* was not proteolytically produced from Factor VII during in vitro coagulation or after infusion of human Factor VII into rabbits. As determined by Western blotting, the human hepatoma cell line, HepG2, cultured in the presence of vitamin K, secreted relatively greater levels of VII* in proportion to VII (75%) than that found in human plasma. Warfarin treatment of HepG2 cells decreased the quantity of VII secreted by 77%, whereas it only inhibited the secretion of VII* by 14%. Immunologic studies of the plasmas from a patient on chronic warfarin therapy and an individual given a short course of high dose warfarin therapy corroborated the in vitro synthetic studies obtained with HepG2 cells. The data are consistent with the production of VII* by posttranslational, proteolytic, modification of VII, that, at least in the HepG2 cells studied, occurs intracellularly. However, other mechanisms for the production of VII*, in particular, alternative RNA splicing of the transcript from a single gene, cannot be excluded.
G J Broze Jr, S Hickman, J P Miletich
Human and rat placental homogenates convert L-thyroxine (T4) to 3,5,3'-L-triiodothyronine (T3) via a pathway termed type II iodothyronine deiodination. To study regulation of this pathway, cell dispersions were prepared from human placental chorionic-decidual membrane. Dispersed cells deiodinated T4 and 3,3',5'-triiodothyronine (rT3), but not T3, at the 5' position. The reaction was only slightly inhibited by 1 mM 6-n-propylthiouracil, enhanced by dithiothreitol, and substantially inhibited by 50 nM iopanoic acid. Incubation of the cells in thyroid hormone-depleted medium induced a near doubling of T4 5'-deiodination in 36-48 h, with a significant rise seen as early as 12 h. Addition of T4, rT3, or T3 to hormone-depleted medium impaired the rise in type II deiodination in a dose-dependent fashion. T4 and rT3 were equipotent in this regard, and T3 was 2-3 times less potent. T4 was effective in physiological concentrations, 6.5-13 nM in medium containing 10% calf serum, and the effect of T4 was not due to its conversion to either T3 or rT3. In cells with deiodinase activity raised by 48 h incubation in thyroid hormone-depleted medium, addition of T4, T3, or rT3 reversed the increase in 8-24 h. Secretion of prolactin and beta hCG by the dispersed cells was not substantially affected by thyroid hormone deprivation. The increase in type II deiodination during thyroid hormone deprivation appears to depend on a signal from the thyroxine molecule, per se, and could potentially defend intracellular, and/or circulating, T3 pools in pathological states of mild-to-moderate hypothyroxinemia.
J T Hidal, M M Kaplan
Human neutrophils (PMN), when stimulated with such chemotaxins as phorbol myristate acetate (PMA), destroy erythrocytes and other targets. Cytotoxicity depends on PMN-generated reactive oxygen metabolites, yet the exact toxic specie and its mode of production is a matter of some dispute. Using 51Cr-labeled erythrocytes as targets, we compared various reactive-O2 generating systems for their abilities to lyse erythrocytes as well as to oxidize hemoglobin to methemoglobin. PMA-activated PMNs or xanthine oxidase plus acetaldehyde were added to target erythrocytes in amounts that provided similar levels of superoxide. PMNs lysed 68.3 +/- 2.9% (SEM) of targets, whereas the xanthine oxidase system was virtually impotent (2.3 +/- 0.8%). In contrast, methemoglobin formation by xanthine oxidase plus acetaldehyde was significantly greater than that caused by stimulated PMNs (P less than 0.001). A similar dichotomy was noted with added reagent H2O2 or the H2O2-generating system, glucose plus glucose oxidase; neither of these caused 51Cr release, but induced 10-70% methemoglobin formation. Thus, although O2- and H2O2 can cross the erythrocyte membrane and rapidly oxidize hemoglobin, they do so evidently without damaging the cell membrane. That a granule constituent of PMNs is required to promote target cell lysis was suggested by the fact that agranular PMN cytoplasts (neutroplasts), although added to generate equal amounts of O2- as intact PMNs, were significantly less lytic to target erythrocytes (P less than 0.01). Iron was shown to be directly involved in lytic efficiency by supplementation studies with 2 microM iron citrate; such supplementation increased PMN cytotoxicity by approximately 30%, but had much less effect on erythrocyte lysis by neutroplasts (approximately 3% increase), and no effect on lysis in the enzymatic oxygen radical-generating systems. These results suggest a critical role for an iron-liganding moiety that is abundantly present in PMN, marginally so in neutroplasts, and not at all in purified enzymatic systems--a moiety that we presume catalyzes very toxic O2 specie generation in the vicinity of juxtaposed erythrocyte targets. The obvious candidate is lactoferrin (LF), and indeed, antilactoferrin IgG, but not nonspecific IgG, reduced PMN cytotoxicity by greater than 85%. Re-adding 10(-8) M pure LF to neutroplasts increased their ability to promote hemolysis by 48.4 +/- 0.9%--to a level near that of intact PMNs. We conclude that O-2 and H2O2 are not sufficient to mediate target cell lysis, but require iron bound to LF, which, in turn, probably generates and focuses toxic O2 radicals, such as OH, to target membrane sites.
G M Vercellotti, B S van Asbeck, H S Jacob
No posts were found with this tag.